19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Increased glucose effectiveness in normoglycemic but insulin-resistant relatives of patients with non-insulin-dependent diabetes mellitus. A novel compensatory mechanism.

      The Journal of clinical investigation
      Adult, Biopsy, Blood Glucose, metabolism, Diabetes Mellitus, Type 2, genetics, Female, Glucose Tolerance Test, Humans, Insulin, blood, secretion, Insulin Resistance, Kinetics, Male, Muscles, cytology, Nuclear Family, Reference Values, Time Factors

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          20 normoglycemic first degree relatives of non-insulin-dependent diabetes mellitus (NIDDM) patients were compared with 20 matched subjects without any family history of diabetes using the intravenous glucose tolerance test with minimal model analysis of glucose disappearance and insulin kinetics. Intravenous glucose tolerance index (Kg) was similar in both groups (1.60 +/- 0.14 vs 1.59 +/- 0.18, x 10(-2) min-1, NS). However, insulin sensitivity (Si) was reduced (3.49 +/- 0.43 vs 4.80 +/- 0.61, x 10(-4) min-1 per mU/liter, P = 0.05), whereas glucose effectiveness (Sg) was increased (1.93 +/- 0.14 vs 1.52 +/- 0.16, x 10(-2) min-1, P < 0.05) in the relatives. Despite insulin resistance neither fasting plasma insulin concentration (7.63 +/- 0.48 vs 6.88 +/- 0.45, mU/liter, NS) nor first phase insulin responsiveness (Phi1) (3.56 +/- 0.53 vs 4.13 +/- 0.62, mU/liter min-1 per mg/dl, NS) were increased in the relatives. Phi1 was reduced for the degree of insulin resistance in the relatives so that the Phi1 x Si index was lower in the relatives (11.5 +/- 2.2 vs 16.7 +/- 2.0, x 10(-4) min-2 per mg/dl, P < 0.05). Importantly, glucose effectiveness correlated with Kg and with basal glucose oxidation but not with total glucose transporter 4 (GLUT4) content in a basal muscle biopsy. In conclusion we confirm the presence of insulin resistance in first degree relatives of NIDDM patients. However, insulin secretion was altered and reduced for the degree of insulin resistance in the relatives, whereas glucose effectiveness was increased. We hypothesize that increased glucose effectiveness maintains glucose tolerance within normal limits in these "normoinsulinemic" relatives of NIDDM patients.

          Related collections

          Author and article information

          Comments

          Comment on this article