16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of non-selective adenosine receptor blockade and phosphodiesterase inhibition in cisplatin-induced nephrogonadal toxicity in rats.

      Clinical and Experimental Pharmacology & Physiology
      Animals, Cisplatin, toxicity, Kidney Tubules, drug effects, metabolism, pathology, Male, Phosphodiesterase Inhibitors, pharmacology, Purinergic P1 Receptor Antagonists, Rats, Rats, Wistar, Receptors, Purinergic P1, physiology, Testis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          1. It is well documented that cisplatin (CDDP) treatment increases the expression of adenosine A(1) receptors in both kidney and testes. However, the effect of adenosine at these receptors is controversial. Adenosine A(1) receptors have been documented to be involved in either cytoprotection or aggravation of nephrotoxicity. The aim of the present study was to examine the effect of the non-selective adenosine receptor inhibitor theophylline and the phosphodiesterase inhibitor pentoxifylline on CDDP-induced renal and testicular toxicity. 2. Male Wister rats were divided into six groups. Two control groups received plain drinking water and a third control group received theophylline 0.8 mg/mL in the drinking water for 2 weeks. One group of animals drinking plain water was injected intraperitoneally (i.p.) with pentoxifylline 50 mg/kg per day for 2 weeks. The remaining groups were treated in the same manner and received single dose of CDDP 7 mg/kg, i.p., 1 week after starting theophylline and pentoxifylline treatment and all animals were killed 1 week after CDDP treatment. 3. Rats treated with CDDP developed nephrotoxicity, as demonstrated by increased kidney and testes weight as a percentage of total bodyweight, blood urea nitrogen and serum creatinine levels and decreased serum calcium and albumin levels. In addition, CDDP treatment resulted in an increase in the production of malondialdehyde (MDA) and decreases in total nitrate/nitrite levels, as well as depletion of reduced glutathione (GSH) content and glutathione peroxidase (GPX) activity in both the kidney and testes. Administration of theophylline in the drinking water to CDDP-treated rats resulted in exacerbation of the indices of nephrotoxicity, depletion of GSH content and GPX activity levels, with increased MDA production and platinum accumulation in both the kidney and testes. However, pentoxifylline administration reduced CDDP-induced biochemical changes and reduced platinum accumulation in both organs. Histopathological examination of the kidney revealed that CDDP treatment produced multifocal tubular atrophy, atypical reparative changes of the tubular epithelium and marked tubular necrosis. Animals treated with the theophylline/CDDP combination showed extensive widespread damage with intratubular calcification. However, pentoxifylline treatment ameliorated the overt changes induced by CDDP treatment. 4. Theophylline exacerbates the deleterious effects of CDDP on rat kidney and testes. However, pentoxifylline alleviates CDDP-induced renal and testicular toxicity.

          Related collections

          Author and article information

          Comments

          Comment on this article