31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      NAADP Mobilizes Ca2+ from Reserve Granules, Lysosome-Related Organelles, in Sea Urchin Eggs

      , , , , ,
      Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nicotinic acid adenine dinucleotide phosphate (NAADP) mobilizes Ca(2+) in many cells and species. Unlike other Ca(2+)-mobilizing messengers, NAADP mobilizes Ca(2+) from an unknown store that is not the endoplasmic reticulum, the store traditionally associated with messenger-mediated Ca(2+) signaling. Here, we demonstrate the presence of a Ca(2+) store in sea urchin eggs mobilized by NAADP that is dependent on a proton gradient maintained by an ATP-dependent vacuolar-type proton pump. Moreover, we provide pharmacological and biochemical evidence that this Ca(2+) store is the reserve granule, the functional equivalent of a lysosome in the sea urchin egg. These findings represent an unsuspected mechanism for messenger-mediated Ca(2+) release from lysosome-related organelles.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose.

          We have previously shown that alkaline treatment of NADP generates a derivative which can mobilize Ca2+ from sea urchin egg homogenates (Clapper, D. L., Walseth, T. F., Dargie, P. J., and Lee, H. C. (1987) J. Biol. Chem. 262, 9561-9568). In this study, the active derivative was purified and shown by high pressure liquid chromatography to be distinct from NADP and NADPH. However, its proton NMR spectrum was virtually identical to that of NADP. The mass of its molecular ion was measured by high resolution mass spectrometry to be 743.0510, one mass unit larger than the corresponding ion of NADP. These results are consistent with the active derivative being nicotinic acid adenine dinucleotide phosphate (NAADP). Ca2+ release induced by NAADP was saturable with a half-maximal concentration of about 30 nM. The release was specific since NADP and nicotinic acid adenine dinucleotide were ineffective even at 10-40-fold higher concentrations. The NAADP-dependent Ca2+ release showed desensitization and was insensitive to heparin and a specific antagonist of cyclic ADP-ribose (cADPR), 8-amino-cADPR. The release mechanism did not require calmodulin. This is similar to the inositol trisphosphate-sensitive release but distinct from that of cADPR. That the NAADP-sensitive Ca2+ stores were different from those sensitive to inositol trisphosphate- or cADPR was further indicated by their differences in distribution on Percoll density gradients. Microinjection of NAADP into live sea urchin eggs induced transient elevation of intracellular Ca2+ and triggered the cortical reaction, indicating the NAADP-dependent mechanism is operative in intact cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers.

            Louisa Lee (2000)
            Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) are two Ca(2+) messengers derived from NAD and NADP, respectively. Although NAADP is a linear molecule, structurally distinct from the cyclic cADPR, it is synthesized by similar enzymes, ADP-ribosyl cyclase and its homolog, CD38. The crystal structure of the cyclase has been solved and its active site identified. These two novel nucleotides have now been shown to be involved in a wide range of cellular functions including: cell cycle regulation in Euglena, a protist; gene expression in plants; and in animal systems, from fertilization to neurotransmitter release and long-term depression in brain. A battery of pharmacological reagents have been developed, providing valuable tools for elucidating the physiological functions of these two novel Ca(2+) messengers. This article reviews these recent results and explores the implications of the existence of multiple Ca(2+) messengers and Ca(2+) stores in cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NAADP induces Ca2+ oscillations via a two-pool mechanism by priming IP3- and cADPR-sensitive Ca2+ stores.

              In sea urchin eggs, Ca2+ mobilization by nicotinic acid adenine dinucleotide phosphate (NAADP) potently self-inactivates but paradoxically induces long-term Ca2+ oscillations. We investigated whether NAADP-induced Ca2+ oscillations arise from the recruitment of other Ca2+ release pathways. NAADP, inositol trisphosphate (IP3) and cyclic ADP-ribose (cADPR) all mobilized Ca2+ from internal stores but only NAADP consistently induced Ca2+ oscillations. NAADP-induced Ca2+ oscillations were partially inhibited by heparin or 8-amino-cADPR alone, but eliminated by the presence of both, indicating a requirement for both IP3- and cADPR-dependent Ca2+ release. Thapsigargin completely blocked IP3 and cADPR responses as well as NAADP-induced Ca2+ oscillations, but only reduced the NAADP-mediated Ca2+ transient. Following NAADP-mediated release from this Ca2+ pool, the amount of Ca2+ in the Ca2+-induced Ca2+ release stores was increased. These results support a mechanism in which Ca2+ oscillations are initiated by Ca2+ release from NAADP-sensitive Ca2+ stores (pool 1) and perpetuated through cycles of Ca2+ uptake into and release from Ca2+-induced Ca2+ release stores (pool 2). These results provide the first direct evidence in support of a two-pool model for Ca2+ oscillations.
                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                November 2002
                November 2002
                : 111
                : 5
                : 703-708
                Article
                10.1016/S0092-8674(02)01082-6
                12464181
                6d49df7d-a6f2-4427-bb27-196c9ceeb0f4
                © 2002

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article