15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How the Dark Energy Can Reconcile \textit{Planck} with Local Determination of the Hubble Constant

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We try to reconcile the tension between the local 2.4\% determination of Hubble constant and its global determination by \(\textit{Planck}\) CMB data and BAO data through modeling the dark energy variously. We find that the chi-square is significantly reduced by \(\Delta\chi^2_\text{all}=-6.76\) in the redshift-binned dark energy model where the \(68\%\) limits of the equation of state of dark energy read \(w(0\leq z\leq 0.1)=-1.958_{-0.508}^{+0.509}\), \(w(0.1< z\leq 1.5)=-1.006_{-0.082}^{+0.092}\), and here \(w(z>1.5)\) is fixed to \(-1\).

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Planck 2013 results. XVI. Cosmological parameters

          We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find a 95% upper limit of r<0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles. Using BAO and CMB data, we find N_eff=3.30+/-0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the summed neutrino mass. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of N_eff=3.046. We find no evidence for dynamical dark energy. Despite the success of the standard LCDM model, this cosmology does not provide a good fit to the CMB power spectrum at low multipoles, as noted previously by the WMAP team. While not of decisive significance, this is an anomaly in an otherwise self-consistent analysis of the Planck temperature data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results

            We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter LCDM model. When WMAP data are combined with measurements of the high-l CMB anisotropy, the BAO scale, and the Hubble constant, the densities, Omegabh2, Omegach2, and Omega_L, are each determined to a precision of ~1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5sigma level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional LCDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their LCDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r<0.13 (95% CL); the spatial curvature parameter is limited to -0.0027 (+0.0039/-0.0038); the summed mass of neutrinos is <0.44 eV (95% CL); and the number of relativistic species is found to be 3.84+/-0.40 when the full data are analyzed. The joint constraint on Neff and the primordial helium abundance agrees with the prediction of standard Big Bang nucleosynthesis. We compare recent PLANCK measurements of the Sunyaev-Zel'dovich effect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Accelerating Universes with Scaling Dark Matter

              Friedmann-Robertson-Walker universes with a presently large fraction of the energy density stored in an \(X\)-component with \(w_X<-1/3\), are considered. We find all the critical points of the system for constant equations of state in that range. We consider further several background quantities that can distinguish the models with different \(w_X\) values. Using a simple toy model with a varying equation of state, we show that even a large variation of \(w_X\) at small redshifts is very difficult to observe with \(d_L(z)\) measurements up to \(z\sim 1\). Therefore, it will require accurate measurements in the range \(1
                Bookmark

                Author and article information

                Journal
                2016-06-19
                2016-06-20
                Article
                10.1140/epjc/s10052-016-4352-x
                1606.05965
                6d4ad02d-3dd6-4e07-a2de-f669a1f0d455

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                5 pages, 4 figures
                astro-ph.CO gr-qc hep-ph hep-th

                Cosmology & Extragalactic astrophysics,General relativity & Quantum cosmology,High energy & Particle physics

                Comments

                Comment on this article