3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Eye-Light on Age-Related Macular Degeneration: Targeting Nrf2-Pathway as a Novel Therapeutic Strategy for Retinal Pigment Epithelium

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Age-related macular degeneration (AMD) is a common disease with a multifactorial aetiology, still lacking effective and curative therapies. Among the early events triggering AMD is the deterioration of the retinal pigment epithelium (RPE), whose fundamental functions assure good health of the retina. RPE is physiologically exposed to high levels of oxidative stress during its lifespan; thus, the integrity and well-functioning of its antioxidant systems are crucial to maintain RPE homeostasis. Among these defensive systems, the Nrf2-pathway plays a primary role. Literature evidence suggests that, in aged and especially in AMD RPE, there is an imbalance between the increased pro-oxidant stress, and the impaired endogenous detoxifying systems, finally reverberating on RPE functions and survival. In this in vitro study on wild type (WT) and Nrf2-silenced (siNrf2) ARPE-19 cells exposed to various AMD-related noxae (H 2O 2, 4-HNE, MG132 + Bafilomycin), we show that the Nrf2-pathway activation is a physiological protective stress response, leading downstream to an up-regulation of the Nrf2-targets HO1 and p62, and that a Nrf2 impairment predisposes the cells to a higher vulnerability to stress. In search of new pharmacologically active compounds potentially useful for AMD, four nature-inspired hybrids (NIH) were individually characterized as Nrf2 activators, and their pharmacological activity was investigated in ARPE-19 cells. The Nrf2 activator dimethyl-fumarate (DMF; 10 μM) was used as a positive control. Three out of the four tested NIH (5 μM) display both direct and indirect antioxidant properties, in addition to cytoprotective effects in ARPE-19 cells under pro-oxidant stimuli. The observed pro-survival effects require the presence of Nrf2, with the exception of the lead compound NIH1, able to exert a still significant, albeit lower, protection even in siNrf2 cells, supporting the concept of the existence of both Nrf2-dependent and independent pathways mediating pro-survival effects. In conclusion, by using some pharmacological tools as well as a reference compound, we dissected the role of the Nrf2-pathway in ARPE-19 stress response, suggesting that the Nrf2 induction represents an efficient defensive strategy to prevent the stress-induced damage.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update.

          The Keap1-Nrf2-ARE ((Kelch-like ECH-Associating protein 1) nuclear factor erythroid 2 related factor 2-antioxidant response element) pathway is one of the most important defense mechanisms against oxidative and/or electrophilic stresses, and it is closely associated with inflammatory diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and aging. In recent years, progress has been made in strategies aimed at modulating the Keap1-Nrf2-ARE pathway. The Nrf2 activator DMF (Dimethylfumarates) has been approved by the FDA as a new first-line oral drug to treat patients with relapsing forms of multiple sclerosis, while a phase 3 study of another promising candidate, CDDO-Me, was terminated for safety reasons. Directly inhibiting Keap1-Nrf2 protein-protein interactions as a novel Nrf2-modulating strategy has many advantages over using electrophilic Nrf2 activators. The development of Keap1-Nrf2 protein-protein interaction inhibitors has become a topic of intense research, and potent inhibitors of this target have been identified. In addition, inhibiting Nrf2 activity has attracted an increasing amount of attention because it may provide an alternative cancer therapy. This review summarizes the molecular mechanisms and biological functions of the Keap1-Nrf2-ARE system. The main focus of this review is on recent progress in studies of agents that target the Keap1-Nrf2-ARE pathway and the therapeutic applications of such agents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            p62 links autophagy and Nrf2 signaling.

            The Nrf2-Keap1-ARE pathway is a redox and xenobiotic sensitive signaling axis that functions to protect cells against oxidative stress, environmental toxicants, and harmful chemicals through the induction of cytoprotective genes. To enforce strict regulation, cells invest a great deal of energy into the maintenance of the Nrf2 pathway to ensure rapid induction upon cellular insult and rapid return to basal levels once the insult is mitigated. Because of the protective role of Nrf2 transcriptional programs, controlled activation of the pathway has been recognized as a means for chemoprevention. On the other hand, constitutive activation of Nrf2, due to somatic mutations of genes that control Nrf2 degradation, promotes carcinogenesis and imparts chemoresistance to cancer cells. Autophagy, a bulk protein degradation process, is another tightly regulated complex cellular process that functions as a cellular quality control system to remove damaged proteins or organelles. Low cellular nutrient levels can also activate autophagy, which acts to restore metabolic homeostasis through the degradation of macromolecules to provide nutrients. Recently, these two cellular pathways were shown to intersect through the direct interaction between p62 (an autophagy adaptor protein) and Keap1 (the Nrf2 substrate adaptor for the Cul3 E3 ubiquitin ligase). Dysregulation of autophagy was shown to result in prolonged Nrf2 activation in a p62-dependent manner. In this review, we will discuss the progress that has been made in dissecting the intersection of these two pathways and the potential tumor-promoting role of prolonged Nrf2 activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes

              ABSTRACT Autophagy is a highly coordinated process that is controlled at several levels including transcriptional regulation. Here, we identify the transcription factor NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2) as a regulator of autophagy gene expression and its relevance in a mouse model of Alzheimer disease (AD) that reproduces impaired APP (amyloid β precursor protein) and human (Hs)MAPT/TAU processing, clearance and aggregation. We screened the chromatin immunoprecipitation database ENCODE for 2 proteins, MAFK and BACH1, that bind the NFE2L2-regulated enhancer antioxidant response element (ARE). Using a script generated from the JASPAR's consensus ARE sequence, we identified 27 putative AREs in 16 autophagy-related genes. Twelve of these sequences were validated as NFE2L2 regulated AREs in 9 autophagy genes by additional ChIP assays and quantitative RT-PCR on human and mouse cells after NFE2L2 activation with sulforaphane. Mouse embryo fibroblasts of nfe2l2-knockout mice exhibited reduced expression of autophagy genes, which was rescued by an NFE2L2 expressing lentivirus, and impaired autophagy flux when exposed to hydrogen peroxide. NFE2L2-deficient mice co-expressing HsAPPV717I and HsMAPTP301L, exhibited more intracellular aggregates of these proteins and reduced neuronal levels of SQSTM1/p62, CALCOCO2/NDP52, ULK1, ATG5 and GABARAPL1. Also, colocalization of HsAPPV717I and HsMAPTP301L with the NFE2L2-regulated autophagy marker SQSTM1/p62 was reduced in the absence of NFE2L2. In AD patients, neurons expressing high levels of APP or MAPT also expressed SQSTM1/p62 and nuclear NFE2L2, suggesting their attempt to degrade intraneuronal aggregates through autophagy. This study shows that NFE2L2 modulates autophagy gene expression and suggests a new strategy to combat proteinopathies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                05 June 2020
                2020
                : 11
                : 844
                Affiliations
                [1] 1 Section of Pharmacology, Department of Drug Sciences, University of Pavia , Pavia, Italy
                [2] 2 Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
                Author notes

                Edited by: Filippo Caraci, University of Catania, Italy

                Reviewed by: Antonio Lopalco, University of Bari Aldo Moro, Italy; Kai Kaarniranta, University of Eastern Finland, Finland

                *Correspondence: Marialaura Amadio, marialaura.amadio@ 123456unipv.it

                This article was submitted to Experimental Pharmacology and Drug Discovery, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2020.00844
                7291861
                6d4b5844-8fc5-4803-ada7-67036decf28c
                Copyright © 2020 Catanzaro, Lanni, Basagni, Rosini, Govoni and Amadio

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 March 2020
                : 22 May 2020
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 54, Pages: 14, Words: 7788
                Funding
                Funded by: Università degli Studi di Pavia 10.13039/501100004769
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                nrf2,age-related macular degeneration (amd),retinal pigment epithelium (rpe),oxidative stress,pharmacological modulation,cytoprotection,ho1,p62

                Comments

                Comment on this article