90
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Predicting Unobserved Phenotypes for Complex Traits from Whole-Genome SNP Data

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genome-wide association studies (GWAS) for quantitative traits and disease in humans and other species have shown that there are many loci that contribute to the observed resemblance between relatives. GWAS to date have mostly focussed on discovery of genes or regulatory regions habouring causative polymorphisms, using single SNP analyses and setting stringent type-I error rates. Genome-wide marker data can also be used to predict genetic values and therefore predict phenotypes. Here, we propose a Bayesian method that utilises all marker data simultaneously to predict phenotypes. We apply the method to three traits: coat colour, %CD8 cells, and mean cell haemoglobin, measured in a heterogeneous stock mouse population. We find that a model that contains both additive and dominance effects, estimated from genome-wide marker data, is successful in predicting unobserved phenotypes and is significantly better than a prediction based upon the phenotypes of close relatives. Correlations between predicted and actual phenotypes were in the range of 0.4 to 0.9 when half of the number of families was used to estimate effects and the other half for prediction. Posterior probabilities of SNPs being associated with coat colour were high for regions that are known to contain loci for this trait. The prediction of phenotypes using large samples, high-density SNP data, and appropriate statistical methodology is feasible and can be applied in human medicine, forensics, or artificial selection programs.

          Author Summary

          Results from recent genome-wide association studies indicate that for most complex traits, there are many loci that contribute to variation in observed phenotype and that the effect of a single variant (single nucleotide polymorphism, SNP) on a phenotype is small. Here, we propose a method that combines the effects of multiple SNPs to make a prediction of a phenotype that has not been observed. We apply the method to data on mice, using phenotypic and genomic data from some individuals to predict phenotypes in other, either related or unrelated, individuals. We find that correlations between predicted and actual phenotypes are in the range of 0.4 to 0.9. The method also shows that the SNPs used in the prediction appear in regions that are known to contain genes associated with the traits studied. The prediction of unobserved phenotypes from high-density SNP data and appropriate statistical methodology is feasible and can be applied in human medicine, forensics, or artificial breeding programs.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Book: not found

          Introduction to Quantitative Genetics

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A genome-wide association study identifies novel risk loci for type 2 diabetes.

            Type 2 diabetes mellitus results from the interaction of environmental factors with a combination of genetic variants, most of which were hitherto unknown. A systematic search for these variants was recently made possible by the development of high-density arrays that permit the genotyping of hundreds of thousands of polymorphisms. We tested 392,935 single-nucleotide polymorphisms in a French case-control cohort. Markers with the most significant difference in genotype frequencies between cases of type 2 diabetes and controls were fast-tracked for testing in a second cohort. This identified four loci containing variants that confer type 2 diabetes risk, in addition to confirming the known association with the TCF7L2 gene. These loci include a non-synonymous polymorphism in the zinc transporter SLC30A8, which is expressed exclusively in insulin-producing beta-cells, and two linkage disequilibrium blocks that contain genes potentially involved in beta-cell development or function (IDE-KIF11-HHEX and EXT2-ALX4). These associations explain a substantial portion of disease risk and constitute proof of principle for the genome-wide approach to the elucidation of complex genetic traits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Newly identified loci that influence lipid concentrations and risk of coronary artery disease.

              To identify genetic variants influencing plasma lipid concentrations, we first used genotype imputation and meta-analysis to combine three genome-wide scans totaling 8,816 individuals and comprising 6,068 individuals specific to our study (1,874 individuals from the FUSION study of type 2 diabetes and 4,184 individuals from the SardiNIA study of aging-associated variables) and 2,758 individuals from the Diabetes Genetics Initiative, reported in a companion study in this issue. We subsequently examined promising signals in 11,569 additional individuals. Overall, we identify strongly associated variants in eleven loci previously implicated in lipid metabolism (ABCA1, the APOA5-APOA4-APOC3-APOA1 and APOE-APOC clusters, APOB, CETP, GCKR, LDLR, LPL, LIPC, LIPG and PCSK9) and also in several newly identified loci (near MVK-MMAB and GALNT2, with variants primarily associated with high-density lipoprotein (HDL) cholesterol; near SORT1, with variants primarily associated with low-density lipoprotein (LDL) cholesterol; near TRIB1, MLXIPL and ANGPTL3, with variants primarily associated with triglycerides; and a locus encompassing several genes near NCAN, with variants strongly associated with both triglycerides and LDL cholesterol). Notably, the 11 independent variants associated with increased LDL cholesterol concentrations in our study also showed increased frequency in a sample of coronary artery disease cases versus controls.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                October 2008
                October 2008
                24 October 2008
                : 4
                : 10
                : e1000231
                Affiliations
                [1 ]School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
                [2 ]National Institute of Animal Science, Rural Development Administration, Cheon An, Korea
                [3 ]Department of Primary Industry, Victoria, Australia
                [4 ]Faculty of Land and Food Resources, University of Melbourne, Melbourne, Australia
                [5 ]Queensland Institute of Medical Research, Brisbane, Australia
                University of Wisconsin, Madison, United States of America
                Author notes

                Conceived and designed the experiments: SHL JHJvdW MEG PMV. Analyzed the data: SHL. Contributed reagents/materials/analysis tools: JHJvdW BJH. Wrote the paper: SHL JHJvdW MEG PMV.

                Article
                08-PLGE-RA-0461R2
                10.1371/journal.pgen.1000231
                2565502
                18949033
                6d56c606-7aef-429a-996f-a5003d59f152
                Lee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 25 April 2008
                : 18 September 2008
                Page count
                Pages: 11
                Categories
                Research Article
                Genetics and Genomics/Animal Genetics
                Genetics and Genomics/Complex Traits

                Genetics
                Genetics

                Comments

                Comment on this article