8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coordinated protein co‐expression in plants by harnessing the synergy between an intein and a viral 2A peptide

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          A novel approach is developed for coordinated expression of multiple proteins from a single transgene in plants. An Ssp DnaE mini‐intein variant engineered for hyper‐N‐terminal autocleavage is covalently linked to the foot‐and‐mouth disease virus 2A (F2A) peptide with unique ribosome skipping property, via a peptide linker, to create an ‘IntF2A’ self‐excising fusion protein domain. This IntF2A domain acts, in cis, to direct highly effective release of its flanking proteins of interest ( POIs) from a ‘polyprotein’ precursor in plants. This is successfully demonstrated in stably transformed cultured tobacco cells as well as in different organs of transgenic tobacco plants. Highly efficient polyprotein processing mediated by the IntF2A domain was also demonstrated in lettuce and Nicotiana benthamiana based on transient expression. Protein constituents released from the polyprotein precursor displayed proper function and accumulated at similar levels inside the cells. Importantly, no C‐terminal F2A extension remains on the released POIs. We demonstrated co‐expression of as many as three proteins in plants without compromising expression levels when compared with those using single‐protein vectors. Accurate differential cellular targeting of released POIs is also achieved. In addition, we succeeded in expressing a fully assembled and functional chimeric anti‐His Tag antibody in N. benthamiana leaves. The IntF2A‐based polyprotein transgene system overcomes key impediments of existing strategies for multiprotein co‐expression in plants, which is particularly important for gene/trait stacking.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          The production of recombinant pharmaceutical proteins in plants.

          Imagine a world in which any protein, either naturally occurring or designed by man, could be produced safely, inexpensively and in almost unlimited quantities using only simple nutrients, water and sunlight. This could one day become reality as we learn to harness the power of plants for the production of recombinant proteins on an agricultural scale. Molecular farming in plants has already proven to be a successful way of producing a range of technical proteins. The first plant-derived recombinant pharmaceutical proteins are now approaching commercial approval, and many more are expected to follow.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip'.

            The 2A region of the aphthovirus foot-and-mouth disease virus (FMDV) polyprotein is only 18 aa long. A 'primary' intramolecular polyprotein processing event mediated by 2A occurs at its own C terminus. FMDV 2A activity was studied in artificial polyproteins in which sequences encoding reporter proteins flanked the 2A sequence such that a single, long, open reading frame was created. The self-processing properties of these artificial polyproteins were investigated and the co-translational 'cleavage' products quantified. The processing products from our artificial polyprotein systems showed a molar excess of 'cleavage' product N-terminal of 2A over the product C-terminal of 2A. A series of experiments was performed to characterize our in vitro translation systems. These experiments eliminated the translational or transcriptional properties of the in vitro systems as an explanation for this imbalance. In addition, the processing products derived from a control construct encoding the P1P2 region of the human rhinovirus polyprotein, known to be proteolytically processed, were quantified and found to be equimolar. Translation of a construct encoding green fluorescent protein (GFP), FMDV 2A and beta-glucuronidase, also in a single open reading frame, in the presence of puromycin, showed this antibiotic to be preferentially incorporated into the [GFP2A] translation product. We conclude that the discrete translation products from our artificial polyproteins are not produced by proteolysis. We propose that the FMDV 2A sequence, rather than representing a proteolytic element, modifies the activity of the ribosome to promote hydrolysis of the peptidyl(2A)-tRNA(Gly) ester linkage, thereby releasing the polypeptide from the translational complex, in a manner that allows the synthesis of a discrete downstream translation product to proceed. This process produces a ribosomal 'skip' from one codon to the next without the formation of a peptide bond.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The 'cleavage' activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring '2A-like' sequences.

              The 2A/2B cleavage of aphtho- and cardiovirus 2A polyproteins is mediated by their 2A proteins 'cleaving' at their own C termini. We have analysed this activity using artificial reporter polyprotein systems comprising green fluorescent protein (GFP) linked via foot-and-mouth disease virus (FMDV) 2A to beta-glucuronidase (GUS) -- forming a single, long, open reading frame. Analysis of the distribution of radiolabel showed a high proportion of the in vitro translation products (approximately 90%) were in the form of the 'cleavage' products GUS and [GFP2A]. Alternative models have been proposed to account for the 'cleavage' activity: proteolysis by a host-cell proteinase, autoproteolysis or a translational effect. To investigate the mechanism of this cleavage event constructs encoding site-directed mutant and naturally occurring '2A-like' sequences were used to program in vitro translation systems and the gel profiles analysed. Analysis of site-directed mutant 2A sequences showed that 'cleavage' occurred in constructs in which all the candidate nucleophilic residues were substituted -- with the exception of aspartate-12. This residue is not, however, conserved amongst all functional '2A-like' sequences. '2A-like' sequences were identified within insect virus polyproteins, the NS34 protein of type C rotaviruses, repeated sequences in Trypanosoma spp. and a eubacterial alpha-glucosiduronasesequence(Thermatoga maritima aguA). All of the 2A-like sequences analysed were active (to various extents), other than the eubacterial alpha-glucosiduronase 2A-like sequence. This method of control of protein biogenesis may well not, therefore, be confined to members of the PICORNAVIRIDAE: Taken together, these data provide additional evidence that neither FMDV 2A nor '2A-like' sequences are autoproteolytic elements.
                Bookmark

                Author and article information

                Contributors
                wsu@hawaii.edu
                Journal
                Plant Biotechnol J
                Plant Biotechnol. J
                10.1111/(ISSN)1467-7652
                PBI
                Plant Biotechnology Journal
                John Wiley and Sons Inc. (Hoboken )
                1467-7644
                1467-7652
                30 March 2017
                June 2017
                : 15
                : 6 ( doiID: 10.1111/pbi.2017.15.issue-6 )
                : 718-728
                Affiliations
                [ 1 ] Department of Molecular Biosciences and BioengineeringUniversity of Hawaii at Manoa Honolulu HIUSA
                [ 2 ]Dow AgroSciences LLC Indianapolis INUSA
                [ 3 ] Department of ChemistryUniversity of Hawaii at Manoa Honolulu HIUSA
                Author notes
                [*] [* ] Correspondence (Tel 1 808 956 3531; fax 808 956 3542; email wsu@ 123456hawaii.edu )
                Author information
                http://orcid.org/0000-0001-8614-9700
                Article
                PBI12670
                10.1111/pbi.12670
                5425387
                27879048
                6d5ef9b5-4679-40df-8bef-173dc9f1105e
                © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 August 2016
                : 16 November 2016
                : 19 November 2016
                Page count
                Figures: 9, Tables: 0, Pages: 11, Words: 8110
                Funding
                Funded by: USDA
                Funded by: Hawaii Community Foundation
                Funded by: Dow AgroSciences
                Categories
                Research Article
                Research Articles
                Custom metadata
                2.0
                pbi12670
                June 2017
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.0.9 mode:remove_FC converted:17.05.2017

                Biotechnology
                fmdv 2a,gene and trait stacking,intein,molecular farming,protein expression,production of protein complex

                Comments

                Comment on this article