16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using Social Network Analysis to Identify Spatiotemporal Spread Patterns of COVID-19 around the World: Online Dashboard Development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The COVID-19 pandemic has spread widely around the world. Many mathematical models have been proposed to investigate the inflection point (IP) and the spread pattern of COVID-19. However, no researchers have applied social network analysis (SNA) to cluster their characteristics. We aimed to illustrate the use of SNA to identify the spread clusters of COVID-19. Cumulative numbers of infected cases (CNICs) in countries/regions were downloaded from GitHub. The CNIC patterns were extracted from SNA based on CNICs between countries/regions. The item response model (IRT) was applied to create a general predictive model for each country/region. The IP days were obtained from the IRT model. The location parameters in continents, China, and the United States were compared. The results showed that (1) three clusters (255, n = 51, 130, and 74 in patterns from Eastern Asia and Europe to America) were separated using SNA, (2) China had a shorter mean IP and smaller mean location parameter than other counterparts, and (3) an online dashboard was used to display the clusters along with IP days for each country/region. Spatiotemporal spread patterns can be clustered using SNA and correlation coefficients (CCs). A dashboard with spread clusters and IP days is recommended to epidemiologists and researchers and is not limited to the COVID-19 pandemic.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study

            Summary Background Since Dec 31, 2019, the Chinese city of Wuhan has reported an outbreak of atypical pneumonia caused by the 2019 novel coronavirus (2019-nCoV). Cases have been exported to other Chinese cities, as well as internationally, threatening to trigger a global outbreak. Here, we provide an estimate of the size of the epidemic in Wuhan on the basis of the number of cases exported from Wuhan to cities outside mainland China and forecast the extent of the domestic and global public health risks of epidemics, accounting for social and non-pharmaceutical prevention interventions. Methods We used data from Dec 31, 2019, to Jan 28, 2020, on the number of cases exported from Wuhan internationally (known days of symptom onset from Dec 25, 2019, to Jan 19, 2020) to infer the number of infections in Wuhan from Dec 1, 2019, to Jan 25, 2020. Cases exported domestically were then estimated. We forecasted the national and global spread of 2019-nCoV, accounting for the effect of the metropolitan-wide quarantine of Wuhan and surrounding cities, which began Jan 23–24, 2020. We used data on monthly flight bookings from the Official Aviation Guide and data on human mobility across more than 300 prefecture-level cities in mainland China from the Tencent database. Data on confirmed cases were obtained from the reports published by the Chinese Center for Disease Control and Prevention. Serial interval estimates were based on previous studies of severe acute respiratory syndrome coronavirus (SARS-CoV). A susceptible-exposed-infectious-recovered metapopulation model was used to simulate the epidemics across all major cities in China. The basic reproductive number was estimated using Markov Chain Monte Carlo methods and presented using the resulting posterior mean and 95% credibile interval (CrI). Findings In our baseline scenario, we estimated that the basic reproductive number for 2019-nCoV was 2·68 (95% CrI 2·47–2·86) and that 75 815 individuals (95% CrI 37 304–130 330) have been infected in Wuhan as of Jan 25, 2020. The epidemic doubling time was 6·4 days (95% CrI 5·8–7·1). We estimated that in the baseline scenario, Chongqing, Beijing, Shanghai, Guangzhou, and Shenzhen had imported 461 (95% CrI 227–805), 113 (57–193), 98 (49–168), 111 (56–191), and 80 (40–139) infections from Wuhan, respectively. If the transmissibility of 2019-nCoV were similar everywhere domestically and over time, we inferred that epidemics are already growing exponentially in multiple major cities of China with a lag time behind the Wuhan outbreak of about 1–2 weeks. Interpretation Given that 2019-nCoV is no longer contained within Wuhan, other major Chinese cities are probably sustaining localised outbreaks. Large cities overseas with close transport links to China could also become outbreak epicentres, unless substantial public health interventions at both the population and personal levels are implemented immediately. Independent self-sustaining outbreaks in major cities globally could become inevitable because of substantial exportation of presymptomatic cases and in the absence of large-scale public health interventions. Preparedness plans and mitigation interventions should be readied for quick deployment globally. Funding Health and Medical Research Fund (Hong Kong, China).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Data-based analysis, modelling and forecasting of the COVID-19 outbreak

              Since the first suspected case of coronavirus disease-2019 (COVID-19) on December 1st, 2019, in Wuhan, Hubei Province, China, a total of 40,235 confirmed cases and 909 deaths have been reported in China up to February 10, 2020, evoking fear locally and internationally. Here, based on the publicly available epidemiological data for Hubei, China from January 11 to February 10, 2020, we provide estimates of the main epidemiological parameters. In particular, we provide an estimation of the case fatality and case recovery ratios, along with their 90% confidence intervals as the outbreak evolves. On the basis of a Susceptible-Infectious-Recovered-Dead (SIDR) model, we provide estimations of the basic reproduction number (R 0), and the per day infection mortality and recovery rates. By calibrating the parameters of the SIRD model to the reported data, we also attempt to forecast the evolution of the outbreak at the epicenter three weeks ahead, i.e. until February 29. As the number of infected individuals, especially of those with asymptomatic or mild courses, is suspected to be much higher than the official numbers, which can be considered only as a subset of the actual numbers of infected and recovered cases in the total population, we have repeated the calculations under a second scenario that considers twenty times the number of confirmed infected cases and forty times the number of recovered, leaving the number of deaths unchanged. Based on the reported data, the expected value of R 0 as computed considering the period from the 11th of January until the 18th of January, using the official counts of confirmed cases was found to be ∼4.6, while the one computed under the second scenario was found to be ∼3.2. Thus, based on the SIRD simulations, the estimated average value of R 0 was found to be ∼2.6 based on confirmed cases and ∼2 based on the second scenario. Our forecasting flashes a note of caution for the presently unfolding outbreak in China. Based on the official counts for confirmed cases, the simulations suggest that the cumulative number of infected could reach 180,000 (with a lower bound of 45,000) by February 29. Regarding the number of deaths, simulations forecast that on the basis of the up to the 10th of February reported data, the death toll might exceed 2,700 (as a lower bound) by February 29. Our analysis further reveals a significant decline of the case fatality ratio from January 26 to which various factors may have contributed, such as the severe control measures taken in Hubei, China (e.g. quarantine and hospitalization of infected individuals), but mainly because of the fact that the actual cumulative numbers of infected and recovered cases in the population most likely are much higher than the reported ones. Thus, in a scenario where we have taken twenty times the confirmed number of infected and forty times the confirmed number of recovered cases, the case fatality ratio is around ∼0.15% in the total population. Importantly, based on this scenario, simulations suggest a slow down of the outbreak in Hubei at the end of February.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                03 March 2021
                March 2021
                : 18
                : 5
                : 2461
                Affiliations
                [1 ]Department of Gastrointestinal Hepatobiliary, Chi Mei Jiali Hospital, Tainan 700, Taiwan; kyawsein@ 123456gnail.com
                [2 ]Department of Medical Research, Chi-Mei Hospital, Tainan 700, Taiwan; smile@ 123456mail.chimei.org.tw
                [3 ]Medical School, St. George’s University of London, London SW17 0RE, UK; jess97yeh@ 123456gmail.com
                [4 ]Department of Physical Medicine and Rehabilitation, Chi Mei Medical Center, Tainan 700, Taiwan
                [5 ]Department of Occupational Medicine, Chi Mei Medical Center, Tainan 700, Taiwan
                Author notes
                [* ]Correspondence: ufan0101@ 123456ms22.hinet.net (W.C.); shihbin1029@ 123456gmail.com (S.-B.S.); Tel.: +886-6291-2811 (S.-B.S.)
                Author information
                https://orcid.org/0000-0003-1329-0679
                https://orcid.org/0000-0001-8348-1433
                Article
                ijerph-18-02461
                10.3390/ijerph18052461
                7967593
                33802247
                6d71a13d-0215-4002-a7f1-61864e5f2c55
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 January 2021
                : 25 February 2021
                Categories
                Article

                Public health
                covid-19,social network analysis,item response model,correlation coefficient,daily confirmed case,spatiotemporal spread pattern

                Comments

                Comment on this article