9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hyperglycemia Aggravates Hepatic Ischemia and Reperfusion Injury by Inhibiting Liver-Resident Macrophage M2 Polarization via C/EBP Homologous Protein-Mediated Endoplasmic Reticulum Stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aggravated liver ischemia and reperfusion (IR) injury has been observed in hyperglycemic hosts, but its underlying mechanism remains undefined. Liver-resident macrophages (Kupffer cells, KCs) and endoplasmic reticulum (ER) stress play crucial roles in the pathogenesis of liver IR injury. In this study, we evaluated the role of ER stress in regulating KC activation and liver IR injury in a streptozotocin-induced hyperglycemic/diabetic mouse model. Compared to the control group (CON group), hyperglycemic mice exhibited a significant increase in liver injury and intrahepatic inflammation following IR. KCs obtained from hyperglycemic mice secreted higher levels of the pro-inflammatory factors TNF-α and IL-6, while they secreted significantly lower levels of the anti-inflammatory factor IL-10. Furthermore, enhanced ER stress was revealed by increased C/EBP homologous protein (CHOP) activation in both IR-stressed livers and KCs from hyperglycemic mice. Specific CHOP knockdown in KCs by siRNA resulted in a slight decrease in TNF-α and IL-6 secretion but dramatically enhanced anti-inflammatory IL-10 secretion in the hyperglycemic group, while no significant changes in cytokine production were observed in the CON group. We also analyzed the role of hyperglycemia in macrophage M1/M2 polarization. Interestingly, we found that hyperglycemia inhibited IL-10-secreting M2-like macrophage polarization, as revealed by decreased Arg1 and Mrc1 gene induction accompanied by a decrease in STAT3 and STAT6 signaling pathway activation. CHOP knockdown restored Arg1 and Mrc1 gene induction, STAT3 and STAT6 activation, and most importantly, IL-10 secretion in hyperglycemic KCs. Finally, in vivo CHOP knockdown in KCs enhanced intrahepatic anti-inflammatory IL-10 gene induction and protected the liver against IR injury in hyperglycemic mice but had no significant effects in control mice. Our results demonstrate that hyperglycemia induces hyper-inflammatory activation of KCs during liver IR injury. Thus, hyperglycemia-induced CHOP over-activation inhibits IL-10-secreting M2-like macrophage polarization by liver-resident macrophages, thereby leading to excessive inflammation and the exacerbation of liver IR injury in diabetic/hyperglycemic hosts. This study provides novel mechanistic insight into macrophage inflammatory activation under hyperglycemic conditions during liver IR.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages.

          Sensors of pathogens, such as Toll-like receptors (TLRs), detect microbes to activate transcriptional programs that orchestrate adaptive responses to specific insults. Here we report that TLR4 and TLR2 specifically activated the endoplasmic reticulum (ER) stress sensor kinase IRE1alpha and its downstream target, the transcription factor XBP1. Previously described ER-stress target genes of XBP1 were not induced by TLR signaling. Instead, TLR-activated XBP1 was required for optimal and sustained production of proinflammatory cytokines in macrophages. Consistent with that finding, activation of IRE1alpha by ER stress acted in synergy with TLR activation for cytokine production. Moreover, XBP1 deficiency resulted in a much greater bacterial burden in mice infected with the TLR2-activating human intracellular pathogen Francisella tularensis. Our findings identify an unsuspected critical function for XBP1 in mammalian host defenses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CHOP is a multifunctional transcription factor in the ER stress response.

            The accumulation of unfolded proteins in the endoplasmic reticulum (ER) induces ER stress. To restore ER homeostasis, cells possess a highly specific ER quality-control system called the unfold protein response (UPR). In the case of prolonged ER stress or UPR malfunction, apoptosis signalling is activated. This ER stress-induced apoptosis has been implicated in the pathogenesis of several conformational diseases. CCAAT-enhancer-binding protein homologous protein (CHOP) is induced by ER stress and mediates apoptosis. Recent studies by the Gotoh group have shown that the CHOP pathway is also involved in ER stress-induced cytokine production in macrophages. The multifunctional roles of CHOP in the ER stress response are discussed below.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endoplasmic reticulum stress and inflammation in obesity and diabetes.

              Obesity is a major problem worldwide that increases risk for a wide range of diseases, including diabetes and heart disease. As such, it is increasingly important to understand how excess adiposity can perturb normal metabolic functions. It is now clear that this disruption involves not only pathways controlling lipid and glucose homeostasis but also integration of metabolic and immune response pathways. Under conditions of nutritional excess, this integration can result in a metabolically driven, low-grade, chronic inflammatory state, referred to as "metaflammation," that targets metabolically critical organs and tissues to adversely affect systemic homeostasis. Endoplasmic reticulum dysfunction is another important feature of chronic metabolic disease that is also linked to both metabolic and immune regulation. A thorough understanding of how these pathways intersect to maintain metabolic homeostasis, as well as how this integration is altered under conditions of nutrient excess, is important to fully understand, and subsequently treat, chronic metabolic diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                13 October 2017
                2017
                : 8
                : 1299
                Affiliations
                [1] 1Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University , Nanjing, China
                Author notes

                Edited by: Kai Fang, University of California, Los Angeles, United States

                Reviewed by: Shi Yue, University of Southern California, United States; Albrecht Piiper, Universitätsklinikum Frankfurt, Germany

                *Correspondence: Cunming Liu, mingliu870@ 123456163.com ; Zhengnian Ding, zhengnianding@ 123456njmu.edu.cn

                Specialty section: This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2017.01299
                5645540
                29081777
                6d9b0681-ca5a-47fc-a121-b88ea1776296
                Copyright © 2017 Rao, Sun, Pan, Chen, Sun, Zhang, Gao, Ding and Liu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 August 2017
                : 27 September 2017
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 53, Pages: 10, Words: 6573
                Categories
                Immunology
                Original Research

                Immunology
                liver ischemia and reperfusion,hyperglycemia,macrophage,kupffer cell,endoplasmic reticulum stress,c/ebp homologous protein

                Comments

                Comment on this article