12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sur les solutions friables de l'\'equation a+b=c

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dans un r\'ecent article, Lagarias et Soundararajan \'etudient les solutions friables \`a l'\'equation a+b=c. Sous l'hypoth\`ese de Riemann g\'en\'eralis\'ees aux fonctions L de Dirichlet, ils obtiennent une estimation pour le nombre de solutions pond\'er\'ees par un poids lisse et une minoration pour le nombre de solutions non pond\'er\'ees. Le but de cet article est de pr\'esenter des arguments qui permettent d'une part de pr\'eciser les termes d'erreur et d'\'etendre les domaines de validit\'e de ces estimations afin de faire le lien avec un travail de la Bret\`eche et Granville, d'autre part d'obtenir le comportement asymptotique exact du nombre de solutions non pond\'er\'ees. In a recent paper, Lagarias and Soundararajan study the y-smooth solutions to the equation a+b=c. Under the Generalised Riemann Hypothesis, they obtain an estimate for the number of those solutions weighted by a compactly supported smooth function, as well as a lower bound for the number of bounded unweighted solutions. In this paper, we aim to prove a more precise estimate for the number of weighted solutions that is valid when y is relatively large with respect to x, so as to connect our estimate with the one obtained by La Bret\`eche and Granville in a recent work. We also prove the conjectured upper bound for the number of bounded unweighted solutions, thus obtaining its exact asymptotic behaviour.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: not found
          • Article: not found

          On integers free of large prime factors

            Author and article information

            Journal
            08 March 2012
            Article
            10.1017/S0305004112000643
            1203.1742
            6d9c2ce4-6150-4b7b-ba87-1a2221acfe29

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            History
            Custom metadata
            11N25, 11M06
            Math. Proc. Cambridge Philos. Soc. 154 (2013), no. 3, 439-463
            20 pages
            math.NT

            Comments

            Comment on this article

            Related Documents Log
            scite_

            Similar content188

            Most referenced authors4