4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Global Source Attribution for Mercury Deposition in the United States

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A multiscale modeling system that consists of a global chemical transport model (CTM) and a nested continental CTM was used to simulate the global atmospheric fate and transport of mercury and its deposition over the contiguous United States. The performance of the CTMs was evaluated against available data. The coefficient of determination (r2) for observed versus simulated annual mercury wet deposition fluxes over North America was 0.50 with average normalized error and bias of 25% and 11%, respectively. The CTMs were used to conduct a global source attribution for selected receptor areas. Three global emission scenarios were used that differed in their distribution of background emissions among direct natural emissions and re-emissions of natural and anthropogenic mercury. North American anthropogenic sources were calculated to contribute only from 25 to 32% to the total mercury deposition over the continental United States. At selected receptors, the contribution of North American anthropogenic emissions ranges from 9 to 81%; Asian anthropogenic emissions were calculated to contribute from 5 to 36%; natural emissions were calculated to contribute from 6 to 59%.

          Related collections

          Author and article information

          Journal
          Environmental Science & Technology
          Environ. Sci. Technol.
          American Chemical Society (ACS)
          0013-936X
          1520-5851
          January 2004
          January 2004
          : 38
          : 2
          : 555-569
          Article
          10.1021/es034109t
          14750733
          6da93a41-d0ae-445b-a625-38e04612b21e
          © 2004
          History

          Comments

          Comment on this article