12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Marine microorganisms as amber inclusions: insights from coastal forests of New Caledonia

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p><strong>Abstract.</strong> Marine microorganisms trapped in amber are extremely rare in the fossil record, and the few existing inclusions recovered so far originate from very few pieces of Cretaceous amber from France. Marine macroscopic inclusions are also very rare and were recently described from Cretaceous Burmese amber and Early Miocene Mexican amber. Whereas a coastal setting for the amber source forests is generally proposed, different scenarios have been suggested to explain how these marine inclusions can become trapped in a resin of terrestrial origin. These scenarios include an introduction of marine organisms (i) through high tides, (ii) from storms and resulting in flooding of the littoral/estuarine forest floor, (iii) in resin dropped into the sea in mangrove-type settings, or (iv) by wind and sea spray. We investigated the possibility of a wind-driven introduction of marine microorganisms into tree resins using modern coastal conifer forests with the highly resinous Cook pine (<i>Araucaria columnaris</i>) in New Caledonia as a model for the Cretaceous amber forests from France. By exposing fresh resin surfaces on the seaward side of the trees and the collection of older in situ resins, we confirmed that marine microorganisms can become trapped on sea-exposed resin, along with remnants from terrestrial organisms, and salt crystals. We suggest that, for cases where only a few marine inclusions are discovered in an amber deposit, an origin from aeolian background deposition is feasible. However, a more energetic but possibly still aeolian event is likely needed to explain the high numbers of marine microorganisms embedded in pieces of Cretaceous amber from France.</p>

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Aquatic organisms as amber inclusions and examples from a modern swamp forest.

          To find aquatic organisms in tree resin may seem to be highly unlikely, but the fossil record provides numerous amber-preserved limnetic arthropods (e.g., water beetles, water striders, and crustaceans) and microorganisms (e.g., bacteria, algae, ciliates, testate amoebae, and rotifers). Here we explain the frequently discussed process of embedding aquatic organisms in tree resin based on field studies in a Florida swamp forest. Different aquatic arthropods and all major groups of limnetic microorganisms were found embedded in resin that had contact with swamp water. The taphonomy of aquatic organisms differs from that of terrestrial plants and animals that get stuck on resin surfaces and are enclosed by successive resin outflows. Large and highly motile arthropods are predestined for embedding. The number of microbial inclusions is increased when tiny drops of water with aquatic organisms become enclosed in resin while it is flowing in an aquatic environment. Bacteria and fungi may grow inside the resin as long as it has not solidified and therefore become secondarily accumulated. In contact with air, even resin that had initially been flowing into water may solidify and potentially form amber.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The aquatic and semiaquatic biota in Miocene amber from the Campo LA Granja mine (Chiapas, Mexico): Paleoenvironmental implications

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Amberground pholadid bivalve borings and inclusions in Burmese amber: implications for proximity of resin-producing forests to brackish waters, and the age of the amber

              Clavate (club-shaped) structures rimming mid-Cretaceous Burmese amber from Myanmar, previously misdiagnosed as fungal sporocarps, are shown to be domichnia (crypts) of martesiine bivalves (Pholadidae: Martesiinae). They are similar in form to Teredolites clavatus Leymerie, 1842 and Gastrochaenolites lapidicus Kelly & Bromley, 1984; however, the former identification is preferable, given that they are martesiine crypts in amber as opposed to a lithic substrate. Cross-cutting relationships between the clavate features and inclusions in the amber demonstrate that the features post-date hardening of the resin. The fills of the crypts are variable, including sand grade sediment of very fine to coarse sand grainsize, and sparry calcite cements. In some cases, the articulated valves of the pholadid bivalve responsible are visible inside the borings. However, one remarkable specimen contains two pairs of articulated shells ‘floating’ in amber, not associated with crypts; an observation that suggests that the resin was still liquid or soft when the bivalves were trapped in the resin. One individual is associated with an irregular sediment-filled feature and shows shell breakage. Formation of a solid rim around a liquid central volume has been documented in subaqueous bodies of resin in modern swamp forests, and argues for a close proximity between the amber-producing trees and a brackish water habitat for the bivalves. The presence of pyrite as thin films and crystal groups within Burmese amber is further consistent with such a depositional environment. Comparison of the size of pholadid body fossils with growth rates of modern equivalents allows the duration of boring activities to be estimated and suggests that small fossil pholadids in Burmese amber became trapped and died within 1–2 weeks of having settled on the resin. Larger examples present within well-formed domichnia formed in hardened resin. Since ‘hardground’ describes early lithified sediment as a substrate and ‘woodground’ describes wood as a substrate, the term ‘amberground’ is used here to described borings in an amber substrate.
                Bookmark

                Author and article information

                Journal
                Fossil Record
                Foss. Rec.
                Copernicus GmbH
                2193-0074
                2018
                August 29 2018
                : 21
                : 2
                : 213-221
                Article
                10.5194/fr-21-213-2018
                6db5712c-3bdd-41d8-99ee-71c215cdfe17
                © 2018

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article