Blog
About

82
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prognosis research strategy (PROGRESS) 4: Stratified medicine research

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In patients with a particular disease or health condition, stratified medicine seeks to identify those who will have the most clinical benefit or least harm from a specific treatment. In this article, the fourth in the PROGRESS series, the authors discuss why prognosis research should form a cornerstone of stratified medicine, especially in regard to the identification of factors that predict individual treatment response

          Related collections

          Most cited references 49

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Rapid planetesimal formation in turbulent circumstellar discs

          The initial stages of planet formation in circumstellar gas discs proceed via dust grains that collide and build up larger and larger bodies (Safronov 1969). How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem (Dominik et al. 2007): boulders stick together poorly (Benz 2000), and spiral into the protostar in a few hundred orbits due to a head wind from the slower rotating gas (Weidenschilling 1977). Gravitational collapse of the solid component has been suggested to overcome this barrier (Safronov 1969, Goldreich & Ward 1973, Youdin & Shu 2002). Even low levels of turbulence, however, inhibit sedimentation of solids to a sufficiently dense midplane layer (Weidenschilling & Cuzzi 1993, Dominik et al. 2007), but turbulence must be present to explain observed gas accretion in protostellar discs (Hartmann 1998). Here we report the discovery of efficient gravitational collapse of boulders in locally overdense regions in the midplane. The boulders concentrate initially in transient high pressures in the turbulent gas (Johansen, Klahr, & Henning 2006), and these concentrations are augmented a further order of magnitude by a streaming instability (Youdin & Goodman 2005, Johansen, Henning, & Klahr 2006, Johansen & Youdin 2007) driven by the relative flow of gas and solids. We find that gravitationally bound clusters form with masses comparable to dwarf planets and containing a distribution of boulder sizes. Gravitational collapse happens much faster than radial drift, offering a possible path to planetesimal formation in accreting circumstellar discs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma.

            Previous, uncontrolled studies have suggested that first-line treatment with gefitinib would be efficacious in selected patients with non-small-cell lung cancer. In this phase 3, open-label study, we randomly assigned previously untreated patients in East Asia who had advanced pulmonary adenocarcinoma and who were nonsmokers or former light smokers to receive gefitinib (250 mg per day) (609 patients) or carboplatin (at a dose calculated to produce an area under the curve of 5 or 6 mg per milliliter per minute) plus paclitaxel (200 mg per square meter of body-surface area) (608 patients). The primary end point was progression-free survival. The 12-month rates of progression-free survival were 24.9% with gefitinib and 6.7% with carboplatin-paclitaxel. The study met its primary objective of showing the noninferiority of gefitinib and also showed its superiority, as compared with carboplatin-paclitaxel, with respect to progression-free survival in the intention-to-treat population (hazard ratio for progression or death, 0.74; 95% confidence interval [CI], 0.65 to 0.85; P<0.001). In the subgroup of 261 patients who were positive for the epidermal growth factor receptor gene (EGFR) mutation, progression-free survival was significantly longer among those who received gefitinib than among those who received carboplatin-paclitaxel (hazard ratio for progression or death, 0.48; 95% CI, 0.36 to 0.64; P<0.001), whereas in the subgroup of 176 patients who were negative for the mutation, progression-free survival was significantly longer among those who received carboplatin-paclitaxel (hazard ratio for progression or death with gefitinib, 2.85; 95% CI, 2.05 to 3.98; P<0.001). The most common adverse events were rash or acne (in 66.2% of patients) and diarrhea (46.6%) in the gefitinib group and neurotoxic effects (69.9%), neutropenia (67.1%), and alopecia (58.4%) in the carboplatin-paclitaxel group. Gefitinib is superior to carboplatin-paclitaxel as an initial treatment for pulmonary adenocarcinoma among nonsmokers or former light smokers in East Asia. The presence in the tumor of a mutation of the EGFR gene is a strong predictor of a better outcome with gefitinib. (ClinicalTrials.gov number, NCT00322452.) 2009 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer.

              To develop a guideline to improve the accuracy of human epidermal growth factor receptor 2 (HER2) testing in invasive breast cancer and its utility as a predictive marker. The American Society of Clinical Oncology and the College of American Pathologists convened an expert panel, which conducted a systematic review of the literature and developed recommendations for optimal HER2 testing performance. The guideline was reviewed by selected experts and approved by the board of directors for both organizations. Approximately 20% of current HER2 testing may be inaccurate. When carefully validated testing is performed, available data do not clearly demonstrate the superiority of either immunohistochemistry (IHC) or in situ hybridization (ISH) as a predictor of benefit from anti-HER2 therapy. The panel recommends that HER2 status should be determined for all invasive breast cancer. A testing algorithm that relies on accurate, reproducible assay performance, including newly available types of brightfield ISH, is proposed. Elements to reliably reduce assay variation (for example, specimen handling, assay exclusion, and reporting criteria) are specified. An algorithm defining positive, equivocal, and negative values for both HER2 protein expression and gene amplification is recommended: a positive HER2 result is IHC staining of 3+ (uniform, intense membrane staining of > 30% of invasive tumor cells), a fluorescent in situ hybridization (FISH) result of more than six HER2 gene copies per nucleus or a FISH ratio (HER2 gene signals to chromosome 17 signals) of more than 2.2; a negative result is an IHC staining of 0 or 1+, a FISH result of less than 4.0 HER2 gene copies per nucleus, or FISH ratio of less than 1.8. Equivocal results require additional action for final determination. It is recommended that to perform HER2 testing, laboratories show 95% concordance with another validated test for positive and negative assay values. The panel strongly recommends validation of laboratory assay or modifications, use of standardized operating procedures, and compliance with new testing criteria to be monitored with the use of stringent laboratory accreditation standards, proficiency testing, and competency assessment. The panel recommends that HER2 testing be done in a CAP-accredited laboratory or in a laboratory that meets the accreditation and proficiency testing requirements set out by this document.
                Bookmark

                Author and article information

                Contributors
                Role: professor of genetic epidemiology
                Role: professor in primary care epidemiology
                Role: senior lecturer in medical statistics
                Role: professor of medical statistics
                Role: professor of clinical epidemiology
                Role: professor of medical decision making
                Role: senior researcher
                Role: professor of medical biometry
                Role: professor of statistics in medicine
                Role: professor of clinical epidemiology
                Journal
                BMJ
                BMJ
                bmj
                BMJ : British Medical Journal
                BMJ Publishing Group Ltd.
                0959-8138
                1756-1833
                2013
                2013
                5 February 2013
                : 346
                Affiliations
                [1 ]Department of Epidemiology and Public Health, University College London, London WC1E 7HB, UK
                [2 ]Arthritis Research UK Primary Care Centre, Primary Care Sciences, Keele University, Keele ST5 5BG, UK
                [3 ]School of Health and Population Sciences, University of Birmingham, Birmingham B15 2TT, UK
                [4 ]Centre for Biostatistics & Genetic Epidemiology, Department of Health Sciences, School of Medicine, University of Leicester, Leicester LE1 7RH, UK
                [5 ]Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, Netherlands
                [6 ]Department of Public Health, Erasmus MC, 3000 CA Rotterdam, Rotterdam, Netherlands
                [7 ]BMJ, BMA House, London WC1H 9JR, UK
                [8 ]Institute of Medical Biometry and Informatics, University Medical Center Freiburg, 79104 Freiburg, Germany
                [9 ]Centre for Statistics in Medicine, University of Oxford, Oxford OX2 6UD, UK
                Author notes
                Correspondence to: H Hemingway h.hemingway@ 123456ucl.ac.uk
                hina004188
                10.1136/bmj.e5793
                3565686
                23386361
                © Hingorani et al 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/2.0/ and http://creativecommons.org/licenses/by-nc/2.0/legalcode.

                Product
                Categories
                Research Methods & Reporting

                Medicine

                Comments

                Comment on this article