40
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cbl downregulation increases RBP4 expression in adipocytes of female mice

      research-article
      ,
      The Journal of Endocrinology
      Bioscientifica Ltd
      RBP4, adipokine, Cbl, adipocyte, insulin

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Obesity leads to adipose tissue dysfunction, insulin resistance and diabetes. Adipose tissue produces adipokines that contribute to regulate insulin sensitivity. In turn, insulin stimulates the production and release of some adipokines. Casitas-b-lymphoma proteins (c-Cbl, Cbl-b and Cbl3) are intracellular adaptor signalling proteins that are rapidly phosphorylated by activation of tyrosine kinase receptors. c-Cbl is rapidly phosphorylated by insulin in adipocytes. Here, we tested the hypothesis that Cbl signalling regulates adipokine expression in adipose tissue. We determined the adipokine profile of WAT of Cbl−/− and Cbl+/+ mice in the C57BL6 background. Female Cbl−/− mice exhibited altered expression of adiponectin, leptin and RBP4 in visceral adipose tissue, while no significant changes were seen in male mice. TNFα and IL6 levels were unaffected by Cbl depletion. RBP4 expression was unchanged in liver. Adipose tissue of Cbl−/− animals showed increased basal activation of extracellular regulated kinases (ERK1/2) compared to Cbl+/+. c-Cbl knockdown in 3T3L1 adipocytes also increased basal ERK phosphorylation and RBP4 expression. Inhibition of ERK1/2 phosphorylation in Cbl-depleted 3T3L1 adipocytes or in adipose tissue explants of Cbl−/− mice reduced RBP4 mRNA. 17β-Estradiol increased RBP4 mRNA in adipocytes. Cbl depletion did not change ER expression but increased phosphorylation of ERα at S118, a target site for ERK1/2. ERK1/2 inhibition reduced phosphoER and RBP4 levels. These findings suggest that Cbl contributes to regulate RBP4 expression in adipose of female mice through ERK1/2-mediated activation of ERα. Since Cbl signalling is compromised in diabetes, these data highlight a novel mechanism that upregulates RBP4 locally.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects.

          Insulin resistance has a causal role in type 2 diabetes. Serum levels of retinol-binding protein 4 (RBP4), a protein secreted by adipocytes, are increased in insulin-resistant states. Experiments in mice suggest that elevated RBP4 levels cause insulin resistance. We sought to determine whether serum RBP4 levels correlate with insulin resistance and change after an intervention that improves insulin sensitivity. We also determined whether elevated serum RBP4 levels are associated with reduced expression of glucose transporter 4 (GLUT4) in adipocytes, an early pathological feature of insulin resistance. We measured serum RBP4, insulin resistance, and components of the metabolic syndrome in three groups of subjects. Measurements were repeated after exercise training in one group. GLUT4 protein was measured in isolated adipocytes. Serum RBP4 levels correlated with the magnitude of insulin resistance in subjects with obesity, impaired glucose tolerance, or type 2 diabetes and in nonobese, nondiabetic subjects with a strong family history of type 2 diabetes. Elevated serum RBP4 was associated with components of the metabolic syndrome, including increased body-mass index, waist-to-hip ratio, serum triglyceride levels, and systolic blood pressure and decreased high-density lipoprotein cholesterol levels. Exercise training was associated with a reduction in serum RBP4 levels only in subjects in whom insulin resistance improved. Adipocyte GLUT4 protein and serum RBP4 levels were inversely correlated. RBP4 is an adipocyte-secreted molecule that is elevated in the serum before the development of frank diabetes and appears to identify insulin resistance and associated cardiovascular risk factors in subjects with varied clinical presentations. These findings provide a rationale for antidiabetic therapies aimed at lowering serum RBP4 levels. Copyright 2006 Massachusetts Medical Society.
            • Record: found
            • Abstract: found
            • Article: not found

            Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice.

            Dysregulation of adipocyte-derived bioactive molecules plays an important role in the development of atherosclerosis. We previously reported that adiponectin, an adipocyte-specific plasma protein, accumulated in the injured artery from the plasma and suppressed endothelial inflammatory response and vascular smooth muscle cell proliferation, as well as macrophage-to-foam cell transformation in vitro. The current study investigated whether the increased plasma adiponectin could actually reduce atherosclerosis in vivo. Apolipoprotein E-deficient mice were treated with recombinant adenovirus expressing human adiponectin (Ad-APN) or beta-galactosidase (Ad-betagal). The plasma adiponectin levels in Ad-APN-treated mice increased 48 times as much as those in Ad-betagal treated mice. On the 14th day after injection, the lesion formation in aortic sinus was inhibited in Ad-APN-treated mice by 30% compared with Ad-betagal-treated mice (P<0.05). In the lesions of Ad-APN-treated mice, the lipid droplets became smaller compared with Ad-betagal-treated mice (P<0.01). Immunohistochemical analyses demonstrated that the adenovirus-mediated adiponectin migrate to foam cells in the fatty streak lesions. The real-time quantitative polymerase chain reaction revealed that Ad-APN treatment significantly suppressed the mRNA levels of vascular cell adhesion molecule-1 by 29% and class A scavenger receptor by 34%, and tended to reduce levels of tumor necrosis factor-alpha without affecting those of CD36 in the aortic tissue. These findings documented for the first time that elevated plasma adiponectin suppresses the development of atherosclerosis in vivo.
              • Record: found
              • Abstract: found
              • Article: not found

              RBP4 activates antigen-presenting cells, leading to adipose tissue inflammation and systemic insulin resistance.

              Insulin resistance is a major cause of diabetes and is highly associated with adipose tissue (AT) inflammation in obesity. RBP4, a retinol transporter, is elevated in insulin resistance and contributes to increased diabetes risk. We aimed to determine the mechanisms for RBP4-induced insulin resistance. Here we show that RBP4 elevation causes AT inflammation by activating innate immunity that elicits an adaptive immune response. RBP4-overexpressing mice (RBP4-Ox) are insulin resistant and glucose intolerant and have increased AT macrophage and CD4 T cell infiltration. In RBP4-Ox, AT CD206(+) macrophages express proinflammatory markers and activate CD4 T cells while maintaining alternatively activated macrophage markers. These effects result from direct activation of AT antigen-presenting cells (APCs) by RBP4 through a JNK-dependent pathway. Transfer of RBP4-activated APCs into normal mice is sufficient to induce AT inflammation, insulin resistance, and glucose intolerance. Thus, RBP4 causes insulin resistance, at least partly, by activating AT APCs that induce CD4 T cell Th1 polarization and AT inflammation. Copyright © 2014 Elsevier Inc. All rights reserved.

                Author and article information

                Journal
                J Endocrinol
                J. Endocrinol
                JOE
                The Journal of Endocrinology
                Bioscientifica Ltd (Bristol )
                0022-0795
                1479-6805
                January 2018
                07 November 2017
                : 236
                : 1
                : 29-41
                Affiliations
                [1]Department of Cellular and Molecular Physiology Institute of Translational Medicine, University of Liverpool, Liverpool, UK
                Author notes
                Correspondence should be addressed to S Mora: mora@ 123456liverpool.ac.uk
                Article
                JOE170359
                10.1530/JOE-17-0359
                5744582
                29114012
                6dbf1eed-6303-4fdd-8f90-214db517e4a5
                © 2018 The authors

                This work is licensed under a Creative Commons Attribution 3.0 Unported License.

                History
                : 21 October 2017
                : 7 November 2017
                Categories
                Research

                Endocrinology & Diabetes
                rbp4,adipokine,cbl,adipocyte,insulin
                Endocrinology & Diabetes
                rbp4, adipokine, cbl, adipocyte, insulin

                Comments

                Comment on this article

                Related Documents Log