42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The mode of inheritance in tetraploid cut roses

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tetraploid hybrid tea roses ( Rosa hybrida) represent most of the commercial cultivars of cut roses and form the basis for breeding programmes. Due to intensive interspecific hybridizations, modern cut roses are complex tetraploids for which the mode of inheritance is not exactly known. The segregation patterns of molecular markers in a tetraploid mapping population of 184 genotypes, an F 1 progeny from a cross of two heterozygous parents, were investigated for disomic and tetrasomic inheritance. The possible occurrence of double reduction was studied as well. We can exclude disomic inheritance, but while our observations are more in line with a tetrasomic inheritance, we cannot exclude that there is a mixture of both inheritance modes. Two novel parental tetraploid linkage maps were constructed using markers known from literature, combined with newly generated markers. Comparison with the integrated consensus diploid map (ICM) of Spiller et al. (Theor Appl Genet 122:489–500, 2010) allowed assigning numbers to each of the linkage groups of both maps and including small linkage groups. So far, the possibility of using marker-assisted selection in breeding of tetraploid cut roses and of other species with a tetrasomic or partly tetrasomic inheritance, is still limited due to the difficulties in establishing marker-trait associations. We used these tetraploid linkage maps to determine associations between markers, two morphological traits and powdery mildew resistance. The knowledge on inheritance and marker-trait associations in tetraploid cut roses will be of direct use to cut rose breeding.

          Electronic supplementary material

          The online version of this article (doi:10.1007/s00122-012-1855-1) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          AFLP: a new technique for DNA fingerprinting.

          A novel DNA fingerprinting technique called AFLP is described. The AFLP technique is based on the selective PCR amplification of restriction fragments from a total digest of genomic DNA. The technique involves three steps: (i) restriction of the DNA and ligation of oligonucleotide adapters, (ii) selective amplification of sets of restriction fragments, and (iii) gel analysis of the amplified fragments. PCR amplification of restriction fragments is achieved by using the adapter and restriction site sequence as target sites for primer annealing. The selective amplification is achieved by the use of primers that extend into the restriction fragments, amplifying only those fragments in which the primer extensions match the nucleotides flanking the restriction sites. Using this method, sets of restriction fragments may be visualized by PCR without knowledge of nucleotide sequence. The method allows the specific co-amplification of high numbers of restriction fragments. The number of fragments that can be analyzed simultaneously, however, is dependent on the resolution of the detection system. Typically 50-100 restriction fragments are amplified and detected on denaturing polyacrylamide gels. The AFLP technique provides a novel and very powerful DNA fingerprinting technique for DNAs of any origin or complexity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Segregation models for disomic, tetrasomic and intermediate inheritance in tetraploids: a general procedure applied to Rorippa (yellow cress) microsatellite data.

            Tetraploid inheritance has two extremes: disomic in allotetraploids and tetrasomic in autotetraploids. The possibility of mixed, or intermediate, inheritance models has generally been neglected. These could well apply to newly formed hybrids or to diploidizing (auto)tetraploids. We present a simple likelihood-based approach that is able to incorporate disomic, tetrasomic, and intermediate inheritance models and estimates the double-reduction rate. Our model shows that inheritance of microsatellite markers in natural tetraploids of Rorippa amphibia and R. sylvestris is tetrasomic, confirming their autotetraploid origin. However, in F(1) hybrids inheritance was intermediate to disomic and tetrasomic inheritance. Apparently, in meiosis, chromosomes paired preferentially with the homolog from the same parental species, but not strictly so. Detected double-reduction rates were low. We tested the general applicability of our model, using published segregation data. In two cases, an intermediate inheritance model gave a better fit to the data than the tetrasomic model advocated by the authors. The existence of inheritance intermediate to disomic and tetrasomic has important implications for linkage mapping and population genetics and hence breeding programs of tetraploids. Methods that have been developed for either disomic or tetrasomic tetraploids may not be generally applicable, particularly in systems where hybridization is common.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The detection and estimation of linkage in polyploids using single-dose restriction fragments.

              Restriction fragment length polymorphism (RFLP) linkage maps have been constructed in several major diploid crops. However, construction of RFLP maps directly in polyploids has lagged behind for several reasons: (1) there are a large number of possible genotypes for each DNA probe expected in a segregating population, and these genotypes cannot always be identified readily by their banding phenotypes; and (2) the genome constitutions (allopolyploidy versus autopolyploidy) in many high polyploids are not clearly understood. We present here an analysis of these problems and propose a general method for mapping polyploids based on segregation of single-dose restriction fragments (SDRFS). SDRFs segregate 1:1 (presence: absence) in gametes of heterozygous plants. Hypothetical allopolyploid and autopolyploid species with four ploidy levels of 2n = 4x, 6x, 8x, and 10x, are used to illustrate the procedures for identifying SDRFs, detecting linkages among SDRFs, and distinguishing allopolyploid versus autopolyploids from polyploids of unknown genome constitution. Family size required, probability of linkage, and attributes of different mapping populations are discussed. We estimate that a population size of 75 is required to identify SDRFs with 98% level of confidence for the four ploidy levels. This population size is also adequate for detecting and estimating linkages in the coupling phase for both allopolyploids and autopolyploids, but linkages in the repulsion phase can be estimated only in allopolyploids. For autopolyploids, it is impractical to estimate meaningful linkages in repulsion because very large family sizes (>750) are required. For high-level polyploids of unknown genome constitution, the ratio between the number of detected repulsion versus coupling linkages may provide a crude measurement of preferential chromosome pairing, which can be used to distinguish allopolyploidy from autopolyploidy. To create a mapping population, one parent (P1) should have high heterozygosity to ensure a high frequency of SDRFs, and the second parent (P2) should have a low level of heterozygosity to increase the probability of detecting polymorphic fragments. This condition could be satisfied by choosing outcrossed hybrids as one parental type and inbreds, haploids, or doubled haploids as the other parental type.
                Bookmark

                Author and article information

                Contributors
                carole.boucoiran@wur.nl
                Journal
                Theor Appl Genet
                Theor. Appl. Genet
                TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik
                Springer-Verlag (Berlin/Heidelberg )
                0040-5752
                1432-2242
                12 April 2012
                12 April 2012
                August 2012
                : 125
                : 3
                : 591-607
                Affiliations
                [1 ]Wageningen University and Research Centre, Plant Breeding, P.O. Box 16, 6700 AA Wageningen, The Netherlands
                [2 ]Fides B.V., P. O. Box 26, 2678 ZG De Lier, The Netherlands
                [3 ]Horticultural Department, Henan Agricultural University, Zhangzhou City, People’s Republic of China
                [4 ]Sygenta Seeds B.V., P.O. Box 2, 1600 AA Enkhuizen, The Netherlands
                Author notes

                Communicated by H. Nybom.

                Article
                1855
                10.1007/s00122-012-1855-1
                3397129
                22526522
                6dc25156-579e-460f-ba80-6ca5e58c5413
                © The Author(s) 2012
                History
                : 26 July 2011
                : 21 March 2012
                Categories
                Original Paper
                Custom metadata
                © Springer-Verlag 2012

                Genetics
                Genetics

                Comments

                Comment on this article