Yoko Endo a , Satoru Yamazaki b , Nobuo Moriyama c , Yuehong Li a , Takashi Ariizumi c , Akihiko Kudo d , Hayato Kawakami d , Yoshinori Tanaka e , Shoko Horita a , Hideomi Yamada a , George Seki a , Toshiro Fujita a
28 September 2006
Na<sup>+</sup>-HCO<sub>3</sub><sup>–</sup> cotransporter (NBC1) plays a major role in bicarbonate reabsorption from proximal tubules. In a previous immunohistochemical study on human kidney, we showed that the kidney-type transporter (kNBC1) was abundantly expressed in the basolateral membranes of proximal tubules while the expression of pancreatic-type transporter (pNBC1) was undetectable. In the present study we tried to determine the localization of NBC1 variants in rat kidney using the antibodies against the unique N-terminal regions of kNBC1 and pNBC1. In Western blot analysis on the membrane-enriched fraction from rat kidney both anti-kNBC1 and anti-pNBC1 antibodies yielded a ∼130 kDa band. In immunohistochemical analysis with confocal microscopy the anti-kNBC1 antibody produced a strong and exclusively basolateral labeling in proximal tubules. On the other hand, the occasional pNBC1 labeling was detected in the apical membranes of proximal tubules. The electron microscopic observation further supported the basolateral localization of kNBC1 as well as the localization of pNBC1 on the basis of the brush border. Acute metabolic acidosis did not change the protein expression levels as well as the intracellular distribution of both NBC1 variants in rat kidney. These results are consistent with a view that kNBC1 is the dominant variant that mediates bicarbonate reabsorption from rat renal proximal tubules. They also indicate that species difference may exist regarding the distribution of NBC1 variants in kidney.
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.