7
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Magnetic alginate microspheres detected by MRI fabricated using microfluidic technique and release behavior of encapsulated dual drugs

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alginate microspheres loaded with superparamagnetic iron oxide nanoparticles (SPIO NPs) have been fabricated by a T-junction microfluidic device combined with an external ionic crosslinking. The obtained microspheres possess excellent visuality under magnetic resonance due to the presence of only 0.6 mg/mL SPIO NPs. The microspheres also show uniform size with narrow distribution and regular spherical shape characterized by optic microscope and environmental scanning electron microscope. Furthermore, dual drugs (5-fluorouracil and doxorubicin hydrochloride) have been loaded within the microspheres. The release behavior of dual drugs from the microspheres show typical sustained release profiles. As a novel embolic agent, such microspheres in blood vessels can be tracked by magnetic resonance scanner. Thus, the integration of embolotherapy, chemotherapy, and postoperative diagnosis can be realized.

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles.

          Synthesis of multifunctional magnetic nanoparticles (MFMNPs) is one of the most active research areas in advanced materials. MFMNPs that have magnetic properties and other functionalities have been demonstrated to show great promise as multimodality imaging probes. Their multifunctional surfaces also allow rational conjugations of biological and drug molecules,making it possible to achieve target-specific diagnostics and therapeutics.This review fi rst outlines the synthesis of MNPs of metal oxides and alloy sand then focuses on recent developments in the fabrication of MFMNPs of core/shell, dumbbell, and composite hybrid type. It also summarizes the general strategies applied for NP surface functionalization. The review further highlights some exciting examples of these MFMNPs for multimodality imaging and for target-specific drug/gene delivery applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging.

            Maghemite (gamma-Fe2O3) nanocrystals stable at neutral pH and in isotonic aqueous media were synthesized and encapsulated within large unilamellar vesicles of egg phosphatidylcholine (EPC) and distearoyl-SN-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG(2000), 5 mol %), formed by film hydration coupled with sequential extrusion. The nonentrapped particles were removed by flash gel exclusion chromatography. The magnetic-fluid-loaded liposomes (MFLs) were homogeneous in size (195 +/- 33 hydrodynamic diameters from quasi-elastic light scattering). Iron loading was varied from 35 up to 167 Fe(III)/lipid mol %. Physical and superparamagnetic characteristics of the iron oxide particles were preserved after liposome encapsulation as shown by cryogenic transmission electron microscopy and magnetization curve recording. In biological media, MFLs were highly stable and avoided ferrofluid flocculation while being nontoxic toward the J774 macrophage cell line. Moreover, steric stabilization ensured by PEG-surface-grafting significantly reduced liposome association with the macrophages. The ratios of the transversal (r2) and longitudinal (r1) magnetic resonance (MR) relaxivities of water protons in MFL dispersions (6 < r2/r1 < 18) ranked them among the best T2 contrast agents, the higher iron loading the better the T2 contrast enhancement. Magnetophoresis demonstrated the possible guidance of MFLs by applying a magnetic field gradient. Mouse MR imaging assessed MFLs efficiency as contrast agents in vivo: MR angiography performed 24 h after intravenous injection of the contrast agent provided the first direct evidence of the stealthiness of PEG-ylated magnetic-fluid-loaded liposomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate.

              SPION with appropriate surface chemistry have been widely used experimentally for numerous in vivo applications. In this study, SPION stabilized by alginate (SPION-alginate) were prepared by a modified coprecipitation method. The structure, size, morphology, magnetic property and relaxivity of the SPION-alginate were characterized systematically by means of XRD, TEM, ESEM, AFM, DLS, SQUID magnetometer and MRI, respectively, and the interaction between alginate and iron oxide (Fe(3)O(4)) was characterized by FT-IR and AFM. The results revealed that typical iron oxide nanoparticles were Fe(3)O(4) with a core diameter of 5-10 nm and SPION-alginate had a hydrodynamic diameter of 193.8-483.2 nm. From the magnetization curve, the Ms of a suspension of SPION-alginate was 40 emu/g, corresponding to 73% of that of solid SPION-alginate. This high Ms may be due to the binding of Fe(3)O(4) nanoparticles to alginate macromolecule strands as visually confirmed by AFM. SPION-alginate of several hundred nanometers was stable in size for 12 months at 4 degrees C. Moreover, T1 relaxivity and T2 relaxivity of SPION-alginate in saline (1.5 T, 20 degrees C) were 7.86+/-0.20 s(-1) mM(-1) and 281.2+/-26.4 s(-1) mM(-1), respectively.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2017
                08 June 2017
                : 12
                : 4335-4347
                Affiliations
                [1 ]National Engineering Research Center for Nanomedicine, School of Chemistry and Chemical Engineering
                [2 ]Department of Radiology, Union Hospital, Tongji Medical College
                [3 ]National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
                Author notes
                Correspondence: Yajiang Yang; Qin Wang, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Wuhan 430074, China, Tel +86 27 8754 3032; +86 27 8754 3432, Fax +86 27 8754 3632, Email yjyang@ 123456hust.edu.cn ; qwang@ 123456hust.edu.cn
                Article
                ijn-12-4335
                10.2147/IJN.S131249
                5473605
                28652736
                6dcfe952-de27-4a92-a501-d958a62f10e4
                © 2017 Wang et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                mri visuality,chemoembolization,microfluidics,dual drugs,alginate micro-spheres
                Molecular medicine
                mri visuality, chemoembolization, microfluidics, dual drugs, alginate micro-spheres

                Comments

                Comment on this article