126
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The neural bases of emotion regulation.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Emotions are powerful determinants of behaviour, thought and experience, and they may be regulated in various ways. Neuroimaging studies have implicated several brain regions in emotion regulation, including the ventral anterior cingulate and ventromedial prefrontal cortices, as well as the lateral prefrontal and parietal cortices. Drawing on computational approaches to value-based decision-making and reinforcement learning, we propose a unifying conceptual framework for understanding the neural bases of diverse forms of emotion regulation.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Emotional processing in anterior cingulate and medial prefrontal cortex.

          Negative emotional stimuli activate a broad network of brain regions, including the medial prefrontal (mPFC) and anterior cingulate (ACC) cortices. An early influential view dichotomized these regions into dorsal-caudal cognitive and ventral-rostral affective subdivisions. In this review, we examine a wealth of recent research on negative emotions in animals and humans, using the example of fear or anxiety, and conclude that, contrary to the traditional dichotomy, both subdivisions make key contributions to emotional processing. Specifically, dorsal-caudal regions of the ACC and mPFC are involved in appraisal and expression of negative emotion, whereas ventral-rostral portions of the ACC and mPFC have a regulatory role with respect to limbic regions involved in generating emotional responses. Moreover, this new framework is broadly consistent with emerging data on other negative and positive emotions. Published by Elsevier Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anterior cingulate conflict monitoring and adjustments in control.

            Conflict monitoring by the anterior cingulate cortex (ACC) has been posited to signal a need for greater cognitive control, producing neural and behavioral adjustments. However, the very occurrence of behavioral adjustments after conflict has been questioned, along with suggestions that there is no direct evidence of ACC conflict-related activity predicting subsequent neural or behavioral adjustments in control. Using the Stroop color-naming task and controlling for repetition effects, we demonstrate that ACC conflict-related activity predicts both greater prefrontal cortex activity and adjustments in behavior, supporting a role of ACC conflict monitoring in the engagement of cognitive control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions.

              Classic cognitive theory conceptualizes executive functions as involving multiple specific domains, including initiation, inhibition, working memory, flexibility, planning, and vigilance. Lesion and neuroimaging experiments over the past two decades have suggested that both common and unique processes contribute to executive functions during higher cognition. It has been suggested that a superordinate fronto-cingulo-parietal network supporting cognitive control may also underlie a range of distinct executive functions. To test this hypothesis in the largest sample to date, we used quantitative meta-analytic methods to analyze 193 functional neuroimaging studies of 2,832 healthy individuals, ages 18-60, in which performance on executive function measures was contrasted with an active control condition. A common pattern of activation was observed in the prefrontal, dorsal anterior cingulate, and parietal cortices across executive function domains, supporting the idea that executive functions are supported by a superordinate cognitive control network. However, domain-specific analyses showed some variation in the recruitment of anterior prefrontal cortex, anterior and midcingulate regions, and unique subcortical regions such as the basal ganglia and cerebellum. These results are consistent with the existence of a superordinate cognitive control network in the brain, involving dorsolateral prefrontal, anterior cingulate, and parietal cortices, that supports a broad range of executive functions.
                Bookmark

                Author and article information

                Journal
                Nat. Rev. Neurosci.
                Nature reviews. Neuroscience
                1471-0048
                1471-003X
                Nov 2015
                : 16
                : 11
                Affiliations
                [1 ] Department of Psychiatry and Behavioral Sciences and the Stanford Neurosciences Institute, Stanford University, 401 Quarry Road, Stanford, California 94304, USA; and the Veterans Affairs Palo Alto Healthcare System and the Sierra Pacific Mental Illness, Research, Education and Clinical Center (MIRECC), 3801 Miranda Ave, Palo Alto, California 94304, USA.
                [2 ] Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246 Hamburg, Germany.
                [3 ] Department of Psychology, Stanford University, 450 Serra Mall, Stanford, California 94305, USA.
                Article
                nrn4044
                10.1038/nrn4044
                26481098
                6dd1f629-b06e-4f3d-8e4b-b43e2b551a0b
                History

                Comments

                Comment on this article