3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A simple method for evaluation pharmacokinetics of glycyrrhetinic acid and potential drug-drug interaction between herbal ingredients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A simple validated high performance liquid chromatography method was developed for the evaluation of the effect of three kinds of active ingredients in traditional Chinese medicine (TCM) on the pharmacokinetics of glycyrrhetinic acid (GA),a kind of active component from the most commonly used TCM licorice. Our results revealed that all of the calibration curves displayed good linearity. Intra- and inter-day precision for GA ranged from 2.54 to 3.98% and from 4.95 to 7.08%, respectively. The recovery rates for GA were determined to be 96.3–106.4%. All the samples showed satisfactory precision and accuracy in various stability tests. Plasma pharmacokinetic parameters including area under the concentration-time curve (AUC), elimination half-life (t 1/2), time to peak concentration(T max) and peak concentration C max were calculated. No significant difference was found as compared the groups administrating GA with and without other ingredients from TCM.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Review of Pharmacological Effects of Glycyrrhiza sp. and its Bioactive Compounds

          Abstract The roots and rhizomes of licorice (Glycyrrhiza) species have long been used worldwide as a herbal medicine and natural sweetener. Licorice root is a traditional medicine used mainly for the treatment of peptic ulcer, hepatitis C, and pulmonary and skin diseases, although clinical and experimental studies suggest that it has several other useful pharmacological properties such as antiinflammatory, antiviral, antimicrobial, antioxidative, anticancer activities, immunomodulatory, hepatoprotective and cardioprotective effects. A large number of components have been isolated from licorice, including triterpene saponins, flavonoids, isoflavonoids and chalcones, with glycyrrhizic acid normally being considered to be the main biologically active component. This review summarizes the phytochemical, pharmacological and pharmacokinetics data, together with the clinical and adverse effects of licorice and its bioactive components. Copyright © 2008 John Wiley & Sons, Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anti-Helicobacter pylori flavonoids from licorice extract.

            Licorice is the most used crude drug in Kampo medicines (traditional Chinese medicines modified in Japan). The extract of the medicinal plant is also used as the basis of anti-ulcer medicines for treatment of peptic ulcer. Among the chemical constituents of the plant, glabridin and glabrene (components of Glycyrrhiza glabra), licochalcone A (G. inflata), licoricidin and licoisoflavone B (G. uralensis) exhibited inhibitory activity against the growth of Helicobacter pylori in vitro. These flavonoids also showed anti-H. pylori activity against a clarithromycin (CLAR) and amoxicillin (AMOX)-resistant strain. We also investigated the methanol extract of G. uralensis. From the extract, three new isoflavonoids (3-arylcoumarin, pterocarpan, and isoflavan) with a pyran ring, gancaonols A[bond]C, were isolated together with 15 known flavonoids. Among these compounds, vestitol, licoricone, 1-methoxyphaseollidin and gancaonol C exhibited anti-H. pylori activity against the CLAR and AMOX-resistant strain as well as four CLAR (AMOX)-sensitive strains. Glycyrin, formononetin, isolicoflavonol, glyasperin D, 6,8-diprenylorobol, gancaonin I, dihydrolicoisoflavone A, and gancaonol B possessed weaker anti-H. pylori activity. These compounds may be useful chemopreventive agents for peptic ulcer or gastric cancer in H. pylori-infected individuals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of P-glycoprotein inhibitor, verapamil, on oral bioavailability and pharmacokinetics of irinotecan in rats.

              The objective of present investigation was to study the effect of verapamil on the pharmacokinetics of irinotecan in order to evaluate the role of P-glycoprotein (P-gp) in irinotecan disposition. An in vitro study using Caco-2 intestinal cell monolayer was first carried out to determine the effect of verapamil on the function of intestinal P-gp. Verapamil (25mg/kg) was administered orally 2h before irinotecan oral (80 mg/kg) or intravenous (20mg/kg) dosing in female Wistar rats. Plasma and biliary samples were collected at specified time points from control and treated animals to determine irinotecan and its metabolite, SN-38 concentrations. Bi-directional transport and inhibition studies in Caco-2 cells indicated irinotecan to be a P-gp substrate and the function of intestinal P-gp was significantly inhibited in presence of verapamil. After oral irinotecan dosing, the mean area under the plasma concentration-time curve (AUC) was found to be 14.03+/-2.18 microgh/ml which was increased significantly, i.e. 61.71+/-15.0 microgh/ml when verapamil was co-administered (P<0.05). Similarly, the mean maximum plasma concentration of irinotecan increased from 2.93+/-0.37 microg/ml (without verapamil) to 10.75+/-1.0 microg/ml (with verapamil) (P<0.05). There was approximately 4-5-folds increase in apparent bioavailability. On the other hand, the intravenous irinotecan administration with verapamil resulted in small but statistically significant effect on AUC (10.76+/-2.0 to 23.3+/-3.8 microgh/ml; P<0.05) and systemic clearance (1206.4+/-159.7 to 713.5+/-78.2 ml/(hkg)). In addition, SN-38 showed significant change in oral pharmacokinetic parameters and minor changes in intravenous pharmacokinetic profile. Biliary excretion curves of both irinotecan and SN-38 were lowered by verapamil. The mean percent of irinotecan excreted into bile over 5h following intravenous and oral administration was found to be 8% and 1%, respectively, which was further reduced to half when treated with verapamil. These results are quite stimulating for further development of a clinically useful oral formulation of irinotecan based on P-gp inhibition.
                Bookmark

                Author and article information

                Contributors
                2818619@163.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                5 August 2019
                5 August 2019
                2019
                : 9
                : 11308
                Affiliations
                GRID grid.440772.2, Guangxi Key Laboratory for Agricultural Resources Chemistry and Biotechnology, , Colleges and Universities Key Laboratory for Efficient Use of Agricultural Resources in the Southeast of Guangxi, College of Chemistry and Food Science, Yulin Normal University, ; Yulin, 53700 China
                Article
                47880
                10.1038/s41598-019-47880-4
                6683301
                31383927
                6dd8347a-085f-4a41-b96e-ccc61243624c
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 30 October 2018
                : 10 June 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100004607, Natural Science Foundation of Guangxi Province (Guangxi Natural Science Foundation);
                Award ID: 2015GXNSFAA139042
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                molecular medicine,chemical biology
                Uncategorized
                molecular medicine, chemical biology

                Comments

                Comment on this article