133
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Alterations towards a permissive stromal microenvironment provide important cues for tumor growth, invasion, and metastasis. In this study, Fibroblast activation protein (FAP), a serine protease selectively produced by tumor-associated fibroblasts in over 90% of epithelial tumors, was used as a platform for studying tumor-stromal interactions.

          We tested the hypothesis that FAP enzymatic activity locally modifies stromal ECM (extracellular matrix) components thus facilitating the formation of a permissive microenvironment promoting tumor invasion in human pancreatic cancer.

          Methods

          We generated a tetracycline-inducible FAP overexpressing fibroblastic cell line to synthesize an in vivo-like 3-dimensional (3D) matrix system which was utilized as a stromal landscape for studying matrix-induced cancer cell behaviors. A FAP-dependent topographical and compositional alteration of the ECM was characterized by measuring the relative orientation angles of fibronectin fibers and by Western blot analyses. The role of FAP in the matrix-induced permissive tumor behavior was assessed in Panc-1 cells in assorted matrices by time-lapse acquisition assays. Also, FAP + matrix-induced regulatory molecules in cancer cells were determined by Western blot analyses.

          Results

          We observed that FAP remodels the ECM through modulating protein levels, as well as through increasing levels of fibronectin and collagen fiber organization. FAP-dependent architectural/compositional alterations of the ECM promote tumor invasion along characteristic parallel fiber orientations, as demonstrated by enhanced directionality and velocity of pancreatic cancer cells on FAP + matrices. This phenotype can be reversed by inhibition of FAP enzymatic activity during matrix production resulting in the disorganization of the ECM and impeded tumor invasion. We also report that the FAP + matrix-induced tumor invasion phenotype is β 1-integrin/FAK mediated.

          Conclusion

          Cancer cell invasiveness can be affected by alterations in the tumor microenvironment. Disruption of FAP activity and β 1-integrins may abrogate the invasive capabilities of pancreatic and other tumors by disrupting the FAP-directed organization of stromal ECM and blocking β 1-integrin dependent cell-matrix interactions. This provides a novel preclinical rationale for therapeutics aimed at interfering with the architectural organization of tumor-associated ECM. Better understanding of the stromal influences that fuel progressive tumorigenic behaviors may allow the effective future use of targeted therapeutics aimed at disrupting specific tumor-stromal interactions.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor microenvironment: the role of the tumor stroma in cancer.

          The tumor microenvironment, composed of non-cancer cells and their stroma, has become recognized as a major factor influencing the growth of cancer. The microenvironment has been implicated in the regulation of cell growth, determining metastatic potential and possibly determining location of metastatic disease, and impacting the outcome of therapy. While the stromal cells are not malignant per se, their role in supporting cancer growth is so vital to the survival of the tumor that they have become an attractive target for chemotherapeutic agents. In this review, we will discuss the various cellular and molecular components of the stromal environment, their effects on cancer cell dynamics, and the rationale and implications of targeting this environment for control of cancer. Additionally, we will emphasize the role of the bone marrow-derived cell in providing cells for the stroma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tumor-stroma interactions in pancreatic ductal adenocarcinoma.

            The host stromal response to an invasive epithelial carcinoma is frequently called a desmoplastic reaction (DR) and is a universal feature of pancreatic ductal adenocarcinoma (PDA). This DR is characterized by a complex interplay between the normal host epithelial cells, invading tumor cells, stromal fibroblasts, inflammatory cells, proliferating endothelial cells, an altered extracellular matrix, and growth factors activating oncogenic signaling pathways by autocrine and paracrine mechanisms. Hence, the tumor microenvironment is a dynamic process promoting tumor growth and invasion through mechanisms likely to include anoikis resistance, genomic instability, and drug resistance. Cell coculture models, murine models (xenograft and genetic), and gene expression profiling studies on human PDA biopsies have identified several key molecules, such as collagen type I, fibronectin, laminin, matrix metalloproteinases (MMP) and their inhibitors (tissue inhibitors of MMP), growth factors (transforming growth factor beta, platelet-derived growth factor, connective tissue growth factor, and hepatocyte growth factor), chemokines, and integrins as constituents of the DR. Despite these findings, it is unclear which molecular-cellular events initiate and drive desmoplasia in PDA. Accumulating evidence indicates that pancreatic stellate cells when activated switch to a myofibroblast phenotype that produces components of the extracellular matrix, MMPs, and tissue inhibitors of MMPs by activating the mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2) pathway. Based on current evidence, several therapeutic strategies are been evaluated on identified potential therapeutic targets. This review summarizes our current understanding of the mechanisms that potentially drive the DR in PDA and future possibilities for therapeutic targeting of this critical process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice.

              Membrane-bound proteases have recently emerged as critical mediators of tumorigenesis, angiogenesis, and metastasis. However, the mechanisms by which they regulate these processes remain unknown. As the cell surface serine protease fibroblast activation protein (FAP) is selectively expressed on tumor-associated fibroblasts and pericytes in epithelial tumors, we set out to investigate the role of FAP in mouse models of epithelial-derived solid tumors. In this study, we demonstrate that genetic deletion and pharmacologic inhibition of FAP inhibited tumor growth in both an endogenous mouse model of lung cancer driven by the K-rasG12D mutant and a mouse model of colon cancer, in which CT26 mouse colon cancer cells were transplanted into immune competent syngeneic mice. Interestingly, growth of only the K-rasG12D-driven lung tumors was also attenuated by inhibition of the closely related protease dipeptidyl peptidase IV (DPPIV). Our results indicate that FAP depletion inhibits tumor cell proliferation indirectly, increases accumulation of collagen, decreases myofibroblast content, and decreases blood vessel density in tumors. These data provide proof of principle that targeting stromal cell-mediated modifications of the tumor microenvironment may be an effective approach to treating epithelial-derived solid tumors.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2011
                13 June 2011
                : 11
                : 245
                Affiliations
                [1 ]Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, USA
                [2 ]Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, USA
                Article
                1471-2407-11-245
                10.1186/1471-2407-11-245
                3141768
                21668992
                6de65c78-4070-4c18-a8ee-42e161b9f4d5
                Copyright ©2011 Lee et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 November 2010
                : 13 June 2011
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article