16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      γ-Secretase inhibitor DAPT sensitizes t-AUCB-induced apoptosis of human glioblastoma cells in vitro via blocking the p38 MAPK/MAPKAPK2/Hsp27 pathway

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim:

          Trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid ( t-AUCB) is a soluble epoxide hydrolase inhibitor that suppresses glioblastoma cell growth in vitro. The aim of this study was to examine whether the γ-secretase inhibitor N-[ N-(3,5-difluorophenacetyl)-l-alanyl]- S-phenylglycine t-butyl ester (DAPT) could sensitize glioma cells to t-AUCB-induced apoptosis.

          Methods:

          Both U251 and U87 human glioblastoma cell lines were tested. Cell growth was assessed using the cell counting kit-8. Cell apoptosis was detected with caspase-3 activity assay kits and flow cytometry. The protein levels in the p38 MAPK/MAPKAPK2/Hsp27 pathway in the cells were analyzed using Western blots.

          Results:

          Pretreatment with DAPT (2 μmol/L) substantially potentiated the growth inhibition caused by t-AUCB (200 μmol/L) in U251 and U87 cells. Furthermore, pretreatment with DAPT markedly increased t-AUCB-induced apoptosis of U251 and U87 cells. T-AUCB alone did not significant affect caspase-3 activity in the cells, but t-AUCB plus DAPT pretreatment caused significant increase of caspase-3 activity. Furthermore, pretreatment with DAPT completely blocked t-AUCB-induced phosphorylation of p38 MAPK, MAPKAPK2 and Hsp27 in the cells.

          Conclusion:

          The γ-secretase inhibitor DAPT sensitizes t-AUCB-induced apoptosis of human glioblastoma cells in vitro via blocking the p38 MAPK/MAPKAPK2/Hsp27 pathway, suggesting that the combination of t-AUCB and DAPT may be a potentially effective strategy for the treatment of glioblastoma.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Notch promotes radioresistance of glioma stem cells.

          Radiotherapy represents the most effective nonsurgical treatments for gliomas. However, gliomas are highly radioresistant and recurrence is nearly universal. Results from our laboratory and other groups suggest that cancer stem cells contribute to radioresistance in gliomas and breast cancers. The Notch pathway is critically implicated in stem cell fate determination and cancer. In this study, we show that inhibition of Notch pathway with gamma-secretase inhibitors (GSIs) renders the glioma stem cells more sensitive to radiation at clinically relevant doses. GSIs enhance radiation-induced cell death and impair clonogenic survival of glioma stem cells but not non-stem glioma cells. Expression of the constitutively active intracellular domains of Notch1 or Notch2 protect glioma stem cells against radiation. Notch inhibition with GSIs does not alter the DNA damage response of glioma stem cells after radiation but rather reduces Akt activity and Mcl-1 levels. Finally, knockdown of Notch1 or Notch2 sensitizes glioma stem cells to radiation and impairs xenograft tumor formation. Taken together, our results suggest a critical role of Notch signaling to regulate radioresistance of glioma stem cells. Inhibition of Notch signaling holds promise to improve the efficiency of current radiotherapy in glioma treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts.

            Cancer stem cells (CSCs) are thought to be critical for the engraftment and long-term growth of many tumors, including glioblastoma (GBM). The cells are at least partially spared by traditional chemotherapies and radiation therapies, and finding new treatments that can target CSCs may be critical for improving patient survival. It has been shown that the NOTCH signaling pathway regulates normal stem cells in the brain, and that GBMs contain stem-like cells with higher NOTCH activity. We therefore used low-passage and established GBM-derived neurosphere cultures to examine the overall requirement for NOTCH activity, and also examined the effects on tumor cells expressing stem cell markers. NOTCH blockade by gamma-secretase inhibitors (GSIs) reduced neurosphere growth and clonogenicity in vitro, whereas expression of an active form of NOTCH2 increased tumor growth. The putative CSC markers CD133, NESTIN, BMI1, and OLIG2 were reduced following NOTCH blockade. When equal numbers of viable cells pretreated with either vehicle (dimethyl sulfoxide) or GSI were injected subcutaneously into nude mice, the former always formed tumors, whereas the latter did not. In vivo delivery of GSI by implantation of drug-impregnated polymer beads also effectively blocked tumor growth, and significantly prolonged survival, albeit in a relatively small cohort of animals. We found that NOTCH pathway inhibition appears to deplete stem-like cancer cells through reduced proliferation and increased apoptosis associated with decreased AKT and STAT3 phosphorylation. In summary, we demonstrate that NOTCH pathway blockade depletes stem-like cells in GBMs, suggesting that GSIs may be useful as chemotherapeutic reagents to target CSCs in malignant gliomas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation.

              The Notch family of proteins plays an integral role in determining cell fates, such as proliferation, differentiation, and apoptosis. We show that Notch-1 and its ligands, Delta-like-1 and Jagged-1, are overexpressed in many glioma cell lines and primary human gliomas. Immunohistochemistry of a primary human glioma tissue array shows the presence in the nucleus of the Notch-1 intracellular domain, indicating Notch-1 activation in situ. Down-regulation of Notch-1, Delta-like-1, or Jagged-1 by RNA interference induces apoptosis and inhibits proliferation in multiple glioma cell lines. In addition, pretreatment of glioma cells with Notch-1 or Delta-like-1 small interfering RNA significantly prolongs survival in a murine orthotopic brain tumor model. These results show, for the first time, the dependence of cancer cells on a single Notch ligand; they also suggest a potential Notch juxtacrine/autocrine loop in gliomas. Notch-1 and its ligands may present novel therapeutic targets in the treatment of glioma.
                Bookmark

                Author and article information

                Journal
                Acta Pharmacol Sin
                Acta Pharmacol. Sin
                Acta Pharmacologica Sinica
                Nature Publishing Group
                1671-4083
                1745-7254
                June 2014
                05 May 2014
                : 35
                : 6
                : 825-831
                Affiliations
                [1 ]Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University , Nanjing 210002, China
                [2 ]Department of Neurosurgery, Second Affiliated Hospital of Soochow University , Suzhou 215004, China
                Author notes
                Article
                aps2013195
                10.1038/aps.2013.195
                4086390
                24793313
                6dec5784-7398-4202-b3f3-55048a9a3839
                Copyright © 2014 CPS and SIMM
                History
                : 24 September 2013
                : 12 December 2013
                Categories
                Original Article

                Pharmacology & Pharmaceutical medicine
                glioma,chemotherapy,γ-secretase,dapt,soluble epoxide hydrolase,t-aucb,apoptosis,caspase-3,p38 mapk,mapkapk2,hsp27

                Comments

                Comment on this article