25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serum interleukin-6 and C-reactive protein are associated with survival in melanoma patients receiving immune checkpoint inhibition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Inflammatory mediators, including acute phase reactants and cytokines, have been reported to be associated with clinical efficacy in patients with melanoma and other cancers receiving immune checkpoint inhibitors (ICI). Analyses of patient sera from three large phase II/III randomized ICI trials, one of which included a chemotherapy arm, were performed to assess whether baseline levels of C-reactive protein (CRP), interleukin-6 (IL-6) or neutrophil/lymphocyte (N/L) ratios were prognostic or predictive.

          Patients and methods

          Baseline and on-treatment sera were analyzed by multiplex protein assays from immunotherapy-naïve patients with metastatic melanoma randomized 1:1 on the Checkmate-064 phase II trial of sequential administration of nivolumab followed by ipilimumab or the reverse sequence. Baseline sera, and peripheral blood mononuclear cells using automated cell counting, were analyzed from treatment-naïve patients who were BRAF wild-type and randomly allocated 1:1 to receive nivolumab or dacarbazine on the phase III Checkmate-066 trial, and from treatment-naïve patients allocated 1:1:1 to receive nivolumab, ipilimumab or both ipilimumab and nivolumab on the phase III Checkmate-067 trial.

          Results

          Higher baseline levels of IL-6 and the N/L ratio, and to a lesser degree, CRP were associated with shorter survival in patients receiving ICI or chemotherapy. Increased on-treatment levels of IL-6 in patients on the Checkmate-064 study were also associated with shorter survival. IL-6 levels from patients on Checkmate-064, Checkmate-066 and Checkmate-067 were highly correlated with levels of CRP and the N/L ratio.

          Conclusion

          IL-6, CRP and the N/L ratio are prognostic factors with higher levels associated with shorter overall survival in patients with metastatic melanoma receiving ICI or chemotherapy in large randomized trials. In a multi-variable analysis of the randomized phase III Checkmate-067 study, IL-6 was a significant prognostic factor for survival.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat.

          T(H)-17 cells are interleukin 17 (IL-17)-secreting CD4+ T helper cells involved in autoimmune disease and mucosal immunity. In naive CD4+ T cells from mice, IL-17 is expressed in response to a combination of IL-6 or IL-21 and transforming growth factor-beta (TGF-beta) and requires induction of the nuclear receptor RORgammat. It has been suggested that the differentiation of human T(H)-17 cells is independent of TGF-beta and thus differs fundamentally from that in mice. We show here that TGF-beta, IL-1beta and IL-6, IL-21 or IL-23 in serum-free conditions were necessary and sufficient to induce IL-17 expression in naive human CD4+ T cells from cord blood. TGF-beta upregulated RORgammat expression but simultaneously inhibited its ability to induce IL-17 expression. Inflammatory cytokines relieved this inhibition and increased RORgammat-directed IL-17 expression. Other gene products detected in T(H)-17 cells after RORgammat induction included the chemokine receptor CCR6, the IL-23 receptor, IL-17F and IL-26. Our studies identify RORgammat as having a central function in the differentiation of human T(H)-17 cells from naive CD4+ T cells and suggest that similar cytokine pathways are involved in this process in mice and humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gp130 and the interleukin-6 family of cytokines.

            Receptors for most interleukins and cytokines that regulate immune and hematopoietic systems belong to the class I cytokine receptor family. These molecules form multichain receptor complexes in order to exhibit high-affinity binding to, and mediate biological functions of, their respective cytokines. In most cases, these functional receptor complexes share common signal transducing receptor components that are also in the class I cytokine receptor family, i.e. gp130, common beta, and common gamma molecules. Interleukin-6 and related cytokines, interleukin-11, leukemia inhibitory factor, oncostatin M, ciliary neurotrophic factor, and cardiotrophin-1 are all pleiotropic and exhibit overlapping biological functions. Functional receptor complexes for this interleukin-6 family of cytokines share gp130 as a component critical for signal transduction. Unlike cytokines sharing common beta and common gamma chains that mainly function in hematopoietic and lymphoid cell systems, the interleukin-6 family of cytokines function extensively outside these systems as well, e.g. from the cardiovascular to the nervous system, owing to ubiquitously expressed gp130. Stimulation of cells with the interleukin-6 family of cytokines triggers homo- or hetero-dimerization of gp130. Although gp130 and its dimer partners possess no intrinsic tyrosine kinase domain, the dimerization of gp130 leads to activation of associated cytoplasmic tyrosine kinases and subsequent modification of transcription factors. This paper reviews recent progress in the study of the interleukin-6 family of cytokines and gp130.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Tumor-Induced IL-6 Reprograms Host Metabolism to Suppress Anti-tumor Immunity

              Summary In patients with cancer, the wasting syndrome, cachexia, is associated with caloric deficiency. Here, we describe tumor-induced alterations of the host metabolic response to caloric deficiency that cause intratumoral immune suppression. In pre-cachectic mice with transplanted colorectal cancer or autochthonous pancreatic ductal adenocarcinoma (PDA), we find that IL-6 reduces the hepatic ketogenic potential through suppression of PPARalpha, the transcriptional master regulator of ketogenesis. When these mice are challenged with caloric deficiency, the resulting relative hypoketonemia triggers a marked rise in glucocorticoid levels. Multiple intratumoral immune pathways are suppressed by this hormonal stress response. Moreover, administering corticosterone to elevate plasma corticosterone to a level that is lower than that occurring in cachectic mice abolishes the response of mouse PDA to an immunotherapy that has advanced to clinical trials. Therefore, tumor-induced IL-6 impairs the ketogenic response to reduced caloric intake, resulting in a systemic metabolic stress response that blocks anti-cancer immunotherapy.
                Bookmark

                Author and article information

                Journal
                J Immunother Cancer
                J Immunother Cancer
                jitc
                jitc
                Journal for Immunotherapy of Cancer
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2051-1426
                2020
                23 June 2020
                : 8
                : 1
                : e000842
                Affiliations
                [1 ] departmentPerlmutter Cancer Center , NYU Langone Health , New York, New York, USA
                [2 ] departmentDepartment of Medicine , University of Colorado Denver-Anschutz Medical Campus , Aurora, Colorado, USA
                [3 ] Bristol-Myers Squibb , Princeton, New Jersey, USA
                Author notes
                [Correspondence to ] Dr Jeffrey Weber; Jeffrey.Weber@ 123456nyulangone.org
                Author information
                http://orcid.org/0000-0002-6328-8107
                Article
                jitc-2020-000842
                10.1136/jitc-2020-000842
                7312339
                32581042
                6df512db-6e77-4957-b75e-4f05929d252d
                © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 20 May 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000054, National Cancer Institute;
                Award ID: K99/R00 CA230201-01
                Award ID: R01 CA175732-01
                Categories
                Clinical/Translational Cancer Immunotherapy
                1506
                2435
                Original research
                Custom metadata
                unlocked

                cytokines,biomarkers, tumor,immunotherapy
                cytokines, biomarkers, tumor, immunotherapy

                Comments

                Comment on this article