22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Science Translational Medicine
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The persistence of HIV reservoirs, including latently infected, resting CD4+ T cells, is the major obstacle to cure HIV infection. CD32a expression was recently reported to mark CD4+ T cells harboring a replication-competent HIV reservoir during antiretroviral therapy (ART) suppression. We aimed to determine whether CD32 expression marks HIV latently or transcriptionally active infected CD4+ T cells. Using peripheral blood and lymphoid tissue of ART-treated HIV+ or SIV+ subjects, we found that most of the circulating memory CD32+ CD4+ T cells expressed markers of activation, including CD69, HLA-DR, CD25, CD38, and Ki67, and bore a TH2 phenotype as defined by CXCR3, CCR4, and CCR6. CD32 expression did not selectively enrich for HIV- or SIV-infected CD4+ T cells in peripheral blood or lymphoid tissue; isolated CD32+ resting CD4+ T cells accounted for less than 3% of the total HIV DNA in CD4+ T cells. Cell-associated HIV DNA and RNA loads in CD4+ T cells positively correlated with the frequency of CD32+ CD69+ CD4+ T cells but not with CD32 expression on resting CD4+ T cells. Using RNA fluorescence in situ hybridization, CD32 coexpression with HIV RNA or p24 was detected after in vitro HIV infection (peripheral blood mononuclear cell and tissue) and in vivo within lymph node tissue from HIV-infected individuals. Together, these results indicate that CD32 is not a marker of resting CD4+ T cells or of enriched HIV DNA–positive cells after ART; rather, CD32 is predominately expressed on a subset of activated CD4+ T cells enriched for transcriptionally active HIV after long-term ART.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy.

          The hypothesis that quiescent CD4+ T lymphocytes carrying proviral DNA provide a reservoir for human immunodeficiency virus-type 1 (HIV-1) in patients on highly active antiretroviral therapy (HAART) was examined. In a study of 22 patients successfully treated with HAART for up to 30 months, replication-competent virus was routinely recovered from resting CD4+ T lymphocytes. The frequency of resting CD4+ T cells harboring latent HIV-1 was low, 0.2 to 16.4 per 10(6) cells, and, in cross-sectional analysis, did not decrease with increasing time on therapy. The recovered viruses generally did not show mutations associated with resistance to the relevant antiretroviral drugs. This reservoir of nonevolving latent virus in resting CD4+ T cells should be considered in deciding whether to terminate treatment in patients who respond to HAART.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection.

            The capacity of HIV-1 to establish latent infection of CD4+ T cells may allow viral persistence despite immune responses and antiretroviral therapy. Measurements of infectious virus and viral RNA in plasma and of infectious virus, viral DNA and viral messenger RNA species in infected cells all suggest that HIV-1 replication continues throughout the course of infection. Uncertainty remains over what fraction of CD4+ T cells are infected and whether there are latent reservoirs for the virus. We show here that during the asymptomatic phase of infection there is an extremely low total body load of latently infected resting CD4+ T cells with replication-competent integrated provirus (<10(7) cells). The most prevalent form of HIV-1 DNA in resting and activated CD4+ T cells is a full-length, linear, unintegrated form that is not replication competent. The infection progresses even though at any given time in the lymphoid tissues integrated HIV-1 DNA is present in only a minute fraction of the susceptible populations, including resting and activated CD4+ T cells and macrophages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Depsipeptide Romidepsin Reverses HIV-1 Latency In Vivo

              Pharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART) has been proposed as a step towards curing HIV-1 infection. However, until now, approaches to reverse HIV-1 latency in humans have yielded mixed results. Here, we report a proof-of-concept phase Ib/IIa trial where 6 aviremic HIV-1 infected adults received intravenous 5 mg/m2 romidepsin (Celgene) once weekly for 3 weeks while maintaining ART. Lymphocyte histone H3 acetylation, a cellular measure of the pharmacodynamic response to romidepsin, increased rapidly (maximum fold range: 3.7–7.7 relative to baseline) within the first hours following each romidepsin administration. Concurrently, HIV-1 transcription quantified as copies of cell-associated un-spliced HIV-1 RNA increased significantly from baseline during treatment (range of fold-increase: 2.4–5.0; p = 0.03). Plasma HIV-1 RNA increased from <20 copies/mL at baseline to readily quantifiable levels at multiple post-infusion time-points in 5 of 6 patients (range 46–103 copies/mL following the second infusion, p = 0.04). Importantly, romidepsin did not decrease the number of HIV-specific T cells or inhibit T cell cytokine production. Adverse events (all grade 1–2) were consistent with the known side effects of romidepsin. In conclusion, romidepsin safely induced HIV-1 transcription resulting in plasma HIV-1 RNA that was readily detected with standard commercial assays demonstrating that significant reversal of HIV-1 latency in vivo is possible without blunting T cell-mediated immune responses. These finding have major implications for future trials aiming to eradicate the HIV-1 reservoir. Trial Registration clinicaltrials.gov NTC02092116
                Bookmark

                Author and article information

                Journal
                Science Translational Medicine
                Sci. Transl. Med.
                American Association for the Advancement of Science (AAAS)
                1946-6234
                1946-6242
                April 18 2018
                April 18 2018
                April 18 2018
                : 10
                : 437
                : eaar6759
                Article
                10.1126/scitranslmed.aar6759
                6282755
                29669853
                6e040f5e-406c-4ebb-80cf-e218d7023a22
                © 2018

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article