30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Reno-Vascular A2B Adenosine Receptor Protects the Kidney from Ischemia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Acute renal failure from ischemia significantly contributes to morbidity and mortality in clinical settings, and strategies to improve renal resistance to ischemia are urgently needed. Here, we identified a novel pathway of renal protection from ischemia using ischemic preconditioning (IP).

          Methods and Findings

          For this purpose, we utilized a recently developed model of renal ischemia and IP via a hanging weight system that allows repeated and atraumatic occlusion of the renal artery in mice, followed by measurements of specific parameters or renal functions. Studies in gene-targeted mice for each individual adenosine receptor (AR) confirmed renal protection by IP in A1 −/− , A2A −/− , or A3AR −/− mice. In contrast, protection from ischemia was abolished in A2BAR −/− mice. This protection was associated with corresponding changes in tissue inflammation and nitric oxide production. In accordance, the A2BAR-antagonist PSB1115 blocked renal protection by IP, while treatment with the selective A2BAR-agonist BAY 60–6583 dramatically improved renal function and histology following ischemia alone. Using an A2BAR-reporter model, we found exclusive expression of A2BARs within the reno-vasculature. Studies using A2BAR bone-marrow chimera conferred kidney protection selectively to renal A2BARs.

          Conclusions

          These results identify the A2BAR as a novel therapeutic target for providing potent protection from renal ischemia.

          Abstract

          Using gene-targeted mice, Holger Eltzschig and colleagues identify the A2B adenosine receptor as a novel therapeutic target for providing protection from renal ischemia.

          Editors' Summary

          Background.

          Throughout life, the kidneys perform the essential task of filtering waste products and excess water from the blood to make urine. Each kidney contains about a million small structures called nephrons, each of which contains a filtration unit consisting of a glomerulus (a small blood vessel) intertwined with a urine-collecting tube called a tubule. If the nephrons stop working for any reason, the rate at which the blood is filtered (the glomerular filtration rate or GFR) decreases and dangerous amounts of waste products such as creatinine build up in the blood. Most kidney diseases destroy the nephrons slowly over years, producing an irreversible condition called chronic renal failure. But the kidneys can also stop working suddenly because of injury or poisoning. One common cause of “acute” renal failure in hospital patients is ischemia—an inadequate blood supply to an organ that results in the death of part of that organ. Heart surgery and other types of surgery in which the blood supply to the kidneys is temporarily disrupted are associated with high rates of acute renal failure.

          Why Was This Study Done?

          Although the kidneys usually recover from acute failure within a few weeks if the appropriate intensive treatment (for example, dialysis) is provided, acute renal failure after surgery can be fatal. Thus, new strategies to protect the kidneys from ischemia are badly needed. Like other organs, the kidneys can be protected from lethal ischemia by pre-exposure to several short, nonlethal episodes of ischemia. It is not clear how this “ischemic preconditioning” increases renal resistance to ischemia but some data suggest that the protection of tissues from ischemia might involve a signaling molecule called extracellular adenosine. This molecule binds to proteins called receptors on the surface of cells and sends signals into them that change their behavior. There are four different adenosine receptor—A1AR, A2AAR, A2BAR, and A3AR—and in this study, the researchers use ischemic preconditioning as an experimental strategy to investigate which of these receptors protects the kidneys from ischemia in mice, information that might provide clues about how to protect the kidneys from ischemia.

          What Did the Researchers Do and Find?

          The researchers first asked whether ischemic preconditioning protects the kidneys of mice strains that lack the genes for individual adenosine receptors ( A1AR −/− , A2AAR −/− , A2BAR −/− , and A3AR −/− mice) from subsequent ischemia. Using a hanging-weight system, they intermittently blocked the renal artery of these mice before exposing them to a longer period of renal ischemia. Twenty-four hours later, they assessed the renal function of the mice by measuring their blood creatinine levels, GFRs, and urine production. Ischemic preconditioning protected all the mice from ischemia-induced loss of kidney function except the A2BAR −/− mice. It also prevented ischemia-induced structural damage and inflammation in the kidneys of wild-type but not A2BAR −/− mice. These results suggest that A2BAR may help to protect the kidneys from ischemia. Consistent with this idea, ischemic preconditioning did not prevent ischemia-induced renal damage in wild-type mice treated with a compound that specifically blocks the activity of A2BAR. However, wild-type mice (but not A2BAR −/− mice) treated with an A2BAR agonist (which activates the receptor) retained their kidney function after renal ischemia without ischemic preconditioning. Finally, the researchers report that A2BAR has to be present on the blood vessels in the kidney to prevent ischemia-induced acute renal failure.

          What Do These Findings Mean?

          These findings suggest that the protection of the kidneys from ischemia and the renal resistance to ischemia that is provided by ischemic preconditioning involve adenosine signaling through A2BAR. They also suggest that adenosine might provide protection against ischemia-induced damage by blocking inflammation in the kidney although other possible mechanisms of action need to be investigated. Importantly, these findings suggest that A2BAR might be a therapeutic target for the prevention of renal ischemia. However, results obtained in animals do not always reflect the situation in people, so before A2BAR agonists can be used to reduce the chances of patients developing acute renal failure after surgery, these results need confirming in people and the safety of A2BAR agonists need to be thoroughly investigated.

          Additional Information.

          Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050137.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Acute kidney injury, mortality, length of stay, and costs in hospitalized patients.

          The marginal effects of acute kidney injury on in-hospital mortality, length of stay (LOS), and costs have not been well described. A consecutive sample of 19,982 adults who were admitted to an urban academic medical center, including 9210 who had two or more serum creatinine (SCr) determinations, was evaluated. The presence and degree of acute kidney injury were assessed using absolute and relative increases from baseline to peak SCr concentration during hospitalization. Large increases in SCr concentration were relatively rare (e.g., >or=2.0 mg/dl in 105 [1%] patients), whereas more modest increases in SCr were common (e.g., >or=0.5 mg/dl in 1237 [13%] patients). Modest changes in SCr were significantly associated with mortality, LOS, and costs, even after adjustment for age, gender, admission International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis, severity of illness (diagnosis-related group weight), and chronic kidney disease. For example, an increase in SCr >or=0.5 mg/dl was associated with a 6.5-fold (95% confidence interval 5.0 to 8.5) increase in the odds of death, a 3.5-d increase in LOS, and nearly 7500 dollars in excess hospital costs. Acute kidney injury is associated with significantly increased mortality, LOS, and costs across a broad spectrum of conditions. Moreover, outcomes are related directly to the severity of acute kidney injury, whether characterized by nominal or percentage changes in serum creatinine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ubiquitin signalling in the NF-kappaB pathway.

            The transcription factor NF-kappaB (nuclear factor kappa enhancer binding protein) controls many processes, including immunity, inflammation and apoptosis. Ubiquitination regulates at least three steps in the NF-kappaB pathway: degradation of IkappaB (inhibitor of NF-kappaB), processing of NF-kappaB precursors, and activation of the IkappaB kinase (IKK). Recent studies have revealed several enzymes involved in the ubiquitination and deubiquitination of signalling proteins that mediate IKK activation through a degradation-independent mechanism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adenosine, an endogenous distress signal, modulates tissue damage and repair.

              Adenosine is formed inside cells or on their surface, mostly by breakdown of adenine nucleotides. The formation of adenosine increases in different conditions of stress and distress. Adenosine acts on four G-protein coupled receptors: two of them, A(1) and A(3), are primarily coupled to G(i) family G proteins; and two of them, A(2A) and A(2B), are mostly coupled to G(s) like G proteins. These receptors are antagonized by xanthines including caffeine. Via these receptors it affects many cells and organs, usually having a cytoprotective function. Joel Linden recently grouped these protective effects into four general modes of action: increased oxygen supply/demand ratio, preconditioning, anti-inflammatory effects and stimulation of angiogenesis. This review will briefly summarize what is known and what is not in this regard. It is argued that drugs targeting adenosine receptors might be useful adjuncts in many therapeutic approaches.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                pmed
                plme
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                June 2008
                24 June 2008
                : 5
                : 6
                : e137
                Affiliations
                [1 ] Department of Pharmacology and Toxicology, Tübingen University Hospital, Tübingen, Germany
                [2 ] Mucosal Inflammation Program, Department of Anesthesiology and Perioperative Medicine, University of Colorado Health Sciences Center, Denver, Colorado, United States of America
                [3 ] Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Tübingen, Germany
                [4 ] Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
                [5 ] Department of Biostatistics, University of Colorado, Denver, Colorado, United States of America
                [6 ] Department of Molecular Pathology, Tübingen University Hospital, Tübingen, Germany
                University of Edinburgh, United Kingdom
                Author notes
                * To whom correspondence should be addressed. E-mail: holger.eltzschig@ 123456uchsc.edu
                Article
                07-PLME-RA-1927R3 plme-05-06-20
                10.1371/journal.pmed.0050137
                2504049
                18578565
                6e062885-dff2-4128-b53d-4797d5d7e2a9
                Copyright: © 2008 Grenz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 5 November 2007
                : 9 May 2008
                Page count
                Pages: 19
                Categories
                Research Article
                Anesthesiology and Pain Management
                Biochemistry
                Critical Care and Emergency Medicine
                Genetics and Genomics
                Immunology
                Nephrology
                Physiology
                Renal Medicine
                Acute Renal Failure
                Custom metadata
                Grenz A, Osswald H, Eckle T, Yang D, Zhang H, et al. (2008) The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med 5(6): e137. doi: 10.1371/journal.pmed.0050137

                Medicine
                Medicine

                Comments

                Comment on this article