102
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource

      , ,
      New Phytologist
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d7179176e87">Phosphorus (P) is limiting for crop yield on &gt; 30% of the world's arable land and, by some estimates, world resources of inexpensive P may be depleted by 2050. Improvement of P acquisition and use by plants is critical for economic, humanitarian and environmental reasons. Plants have evolved a diverse array of strategies to obtain adequate P under limiting conditions, including modifications to root architecture, carbon metabolism and membrane structure, exudation of low molecular weight organic acids, protons and enzymes, and enhanced expression of the numerous genes involved in low-P adaptation. These adaptations may be less pronounced in mycorrhizal-associated plants. The formation of cluster roots under P-stress by the nonmycorrhizal species white lupin (Lupinus albus), and the accompanying biochemical changes exemplify many of the plant adaptations that enhance P acquisition and use. Physiological, biochemical, and molecular studies of white lupin and other species response to P-deficiency have identified targets that may be useful for plant improvement. Genomic approaches involving identification of expressed sequence tags (ESTs) found under low-P stress may also yield target sites for plant improvement. Interdisciplinary studies uniting plant breeding, biochemistry, soil science, and genetics under the large umbrella of genomics are prerequisite for rapid progress in improving nutrient acquisition and use in plants. Contents I. Introduction 424 II. The phosphorus conundrum 424 III. Adaptations to low P 424 IV. Uptake of P 424 V. P deficiency alters root development and function 426 VI. P deficiency modifies carbon metabolism 431 VII. Acid phosphatase 436 VIII. Genetic regulation of P responsive genes 437 IX. Improving P acquisition 439 X. Synopsis 440. </p>

          Related collections

          Author and article information

          Journal
          New Phytologist
          New Phytol
          Wiley-Blackwell
          0028-646X
          1469-8137
          March 2003
          March 2003
          : 157
          : 3
          : 423-447
          Article
          10.1046/j.1469-8137.2003.00695.x
          33873400
          6e07f7ba-6eb9-4b10-9f28-26d7e5762e3b
          © 2003
          History

          Comments

          Comment on this article