Blog
About

1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Causal models and learning from data: integrating causal modeling and statistical estimation.

      1 ,

      Epidemiology (Cambridge, Mass.)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The practice of epidemiology requires asking causal questions. Formal frameworks for causal inference developed over the past decades have the potential to improve the rigor of this process. However, the appropriate role for formal causal thinking in applied epidemiology remains a matter of debate. We argue that a formal causal framework can help in designing a statistical analysis that comes as close as possible to answering the motivating causal question, while making clear what assumptions are required to endow the resulting estimates with a causal interpretation. A systematic approach for the integration of causal modeling with statistical estimation is presented. We highlight some common points of confusion that occur when causal modeling techniques are applied in practice and provide a broad overview on the types of questions that a causal framework can help to address. Our aims are to argue for the utility of formal causal thinking, to clarify what causal models can and cannot do, and to provide an accessible introduction to the flexible and powerful tools provided by causal models.

          Related collections

          Author and article information

          Journal
          Epidemiology
          Epidemiology (Cambridge, Mass.)
          1531-5487
          1044-3983
          May 2014
          : 25
          : 3
          Affiliations
          [1 ] From the Divisions of Biostatistics and Epidemiology, University of California, Berkeley, School of Public Health, Berkeley, CA.
          Article
          00001648-201405000-00013 NIHMS557526
          10.1097/EDE.0000000000000078
          24713881

          Comments

          Comment on this article