+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic Polymorphism Study on Aedes albopictus of Different Geographical Regions Based on DNA Barcoding

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Aedes albopictus is a very important vector for pathogens of many infectious diseases including dengue fever. In this study, we explored the genetic polymorphism of Aedes albopictus strains in different geographical regions using DNA barcoding of mitochondrial COI ( MT-COI) gene. We collected MT-COI sequence of 106 Aedes albopictus mosquitos from 6 provinces in China including Fujian, Guangdong, Hainan, Yunnan, and Taiwan. The length of the sequences is 709bp with the content of A+T (67.7%) greater than that of G+C (32.3%). We identified mutations in 90 (13.68%) loci, of which 57 (63.33%) are transitions, 28 (31.11%) are transversions, and 5 (5.56%) are hypervariable loci. In addition, we obtained 42 haplotypes, 4 (9.52%) of which are shared among different populations. The haplotype diversity of Aedes albopictus is 0.882 and nucleotide diversity is 0.01017. Moreover, the pedigree network diagram shows that most haplotypes are under parallel evolution, suggesting a local expansion of Aedes albopictus in history. Finally, the Neighbor-Joining tree of MT-COI haplotypes reveals a certain correlation between haplotype clusters and geographical distribution, and there are differences among Aedes albopictus in different geographical regions. In conclusion, DNA barcoding of MT-COI gene is an effective method to study the genetic structure of Aedes albopictus.

          Related collections

          Most cited references 35

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

          We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from free of charge.
            • Record: found
            • Abstract: found
            • Article: not found

            Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.

             F Tajima (1989)
            The relationship between the two estimates of genetic variation at the DNA level, namely the number of segregating sites and the average number of nucleotide differences estimated from pairwise comparison, is investigated. It is found that the correlation between these two estimates is large when the sample size is small, and decreases slowly as the sample size increases. Using the relationship obtained, a statistical method for testing the neutral mutation hypothesis is developed. This method needs only the data of DNA polymorphism, namely the genetic variation within population at the DNA level. A simple method of computer simulation, that was used in order to obtain the distribution of a new statistic developed, is also presented. Applying this statistical method to the five regions of DNA sequences in Drosophila melanogaster, it is found that large insertion/deletion (greater than 100 bp) is deleterious. It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.
              • Record: found
              • Abstract: found
              • Article: not found

              Biological identifications through DNA barcodes.

              Although much biological research depends upon species diagnoses, taxonomic expertise is collapsing. We are convinced that the sole prospect for a sustainable identification capability lies in the construction of systems that employ DNA sequences as taxon 'barcodes'. We establish that the mitochondrial gene cytochrome c oxidase I (COI) can serve as the core of a global bioidentification system for animals. First, we demonstrate that COI profiles, derived from the low-density sampling of higher taxonomic categories, ordinarily assign newly analysed taxa to the appropriate phylum or order. Second, we demonstrate that species-level assignments can be obtained by creating comprehensive COI profiles. A model COI profile, based upon the analysis of a single individual from each of 200 closely allied species of lepidopterans, was 100% successful in correctly identifying subsequent specimens. When fully developed, a COI identification system will provide a reliable, cost-effective and accessible solution to the current problem of species identification. Its assembly will also generate important new insights into the diversification of life and the rules of molecular evolution.

                Author and article information

                Biomed Res Int
                Biomed Res Int
                BioMed Research International
                29 May 2018
                : 2018
                1Fujian International Travel Healthcare Center, Fuzhou, Fujian 350001, China
                2Quanzhou Entry-Exit Inspection and Quarantine Bureau Comprehensive Technical Service Center, Quanzhou 362000, Fujian Province, China
                3Fujian Medical University, Fuzhou, Fujian 350001, China
                Author notes

                Academic Editor: Yudong Cai

                Copyright © 2018 Yiliang Fang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Research Article


                Comment on this article