8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of polycyclic aromatic hydrocarbons (PAHs) on an aquatic ecosystem: acute toxicity and community-level toxic impact tests of benzo[a]pyrene using lake zooplankton community.

      The Journal of toxicological sciences
      Animals, Benzo(a)pyrene, toxicity, Cladocera, drug effects, Ecosystem, Lakes, Lethal Dose 50, Toxicity Tests, Acute, Water Pollutants, Chemical, Zooplankton

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We estimated acute toxicity of benzo[a]pyrene (B[a]P) using two cladoceran species, Ceriodaphnia reticulata and Daphnia magna, and also analyzed its impact on zooplankton community throughout an exposure experiment using small-scale mesocosms. LC(50) of B[a]P for C. reticulata and D. magna was 4.3 and 4.7 µg/l, respectively. However, individuals fed with Chlorella showed higher LC(50), 6.1 µg/l for C. reticulata and 8.0 µg/l for D. magna. In the exposure experiment, we examined the impact of B[a]P on zooplankton community using conceivable concentrations in the environment (5 and 10 µg/l) using typical zooplankton community in eutrophicated systems. Despite the residence time of B[a]P in the water column was short as < 4 days, application of B[a]P induced decrease of zooplankton abundance. However, the recovery pattern was different among cladocerans and rotifers. Consequently, B[a]P showed insecticide-like impacts, suppressing cladoceran populations and inducing the dominance of rotifers particularly under high concentration (10 µg/l). Results have suggested that, even such short duration of B[a]P in the water body can have impact on zooplankton abundance and community structure. Since B[a]P easily precipitate to the bottom and rapidly disappears from the water body, careful monitoring and further assessment of the potential toxicity of polycyclic aromatic hydrocarbons are necessary.

          Related collections

          Author and article information

          Journal
          23358147
          10.2131/jts.38.131

          Chemistry
          Animals,Benzo(a)pyrene,toxicity,Cladocera,drug effects,Ecosystem,Lakes,Lethal Dose 50,Toxicity Tests, Acute,Water Pollutants, Chemical,Zooplankton

          Comments

          Comment on this article