+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inter-day reliability of surface electromyography recordings of the lumbar part of erector spinae longissimus and trapezius descendens during box lifting

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Low back pain and neck-shoulder pain are the most reported types of work-related musculoskeletal disorders, and performing heavy lifting at work and working with trunk rotation increase the risk of developing work-related musculoskeletal disorders. Surface electromyography (sEMG) provides information about the electrical activity of muscles. Thus it has the potential to retrieve indirect information about the physical exposure of specific muscles of workers during their actual work. This study aimed to investigate the inter-day reliability of absolute and normalized amplitude of sEMG measurements obtained during repeated standardized reference lifts.


          The inter-day reliability of sEMG of the erector spinae longissimus and trapezius descendens muscles was tested during standardized box lifts. The lifts were performed with loads of 3, 15 and 30 kg from floor to table and from table to table in three conditions, i.e., forearm length (short reaching distance), ¾ arm length (long reaching distance) and forearm length with trunk rotation. Absolute and normalized root mean square (absRMS and normRMS) values were extracted. In line with the guidelines for reporting reliability and agreement studies, we reported relative and absolute reliability estimated by intra class correlation (ICC 3,K), standard error of measurement (SEM) and minimal detectable change in percent (MDC).


          The ICC 3,K was higher for absRMS compared with normRMS while SEM and maximal voluntary contraction (MVC) were similar. A total of 50 out of 56, i.e., 89%, and 41 out of 56, i.e., 73%, of the lifting situations were in the range from moderate to almost perfect for absRMS and normRMS, respectively. The SEM and MDC shoved more variation in the lifting situations performed from floor to table and in the trapezius descendens muscle than in the erector spinae longissimus muscle.


          This reliability study showed that maximum absRMS and normRMS were found to have a fair to substantial relative inter-day reliability for most lifts but were more reliable when lifting from table to table than from floor to table for both trapezius descendens and erector spinae muscles. The relative inter-day reliability was higher for absolute compared with normalized sEMG amplitudes while the absolute reliability was similar.

          Related collections

          Most cited references 36

          • Record: found
          • Abstract: found
          • Article: not found

          Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM.

          Reliability, the consistency of a test or measurement, is frequently quantified in the movement sciences literature. A common metric is the intraclass correlation coefficient (ICC). In addition, the SEM, which can be calculated from the ICC, is also frequently reported in reliability studies. However, there are several versions of the ICC, and confusion exists in the movement sciences regarding which ICC to use. Further, the utility of the SEM is not fully appreciated. In this review, the basics of classic reliability theory are addressed in the context of choosing and interpreting an ICC. The primary distinction between ICC equations is argued to be one concerning the inclusion (equations 2,1 and 2,k) or exclusion (equations 3,1 and 3,k) of systematic error in the denominator of the ICC equation. Inferential tests of mean differences, which are performed in the process of deriving the necessary variance components for the calculation of ICC values, are useful to determine if systematic error is present. If so, the measurement schedule should be modified (removing trials where learning and/or fatigue effects are present) to remove systematic error, and ICC equations that only consider random error may be safely used. The use of ICC values is discussed in the context of estimating the effects of measurement error on sample size, statistical power, and correlation attenuation. Finally, calculation and application of the SEM are discussed. It is shown how the SEM and its variants can be used to construct confidence intervals for individual scores and to determine the minimal difference needed to be exhibited for one to be confident that a true change in performance of an individual has occurred.
            • Record: found
            • Abstract: found
            • Article: not found

            How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25 years of research.

             Adrian Burden (2010)
            Electromyograms (EMGs) need to be normalized if comparisons are sought between trials when electrodes are reapplied, as well as between different muscles and individuals. The methods used to normalize EMGs recorded from healthy individuals have been appraised for more than a quarter of a century. Eight methods were identified and reviewed based on criteria relating to their ability to facilitate the comparison of EMGs. Such criteria included the magnitude and pattern of the normalized EMG, reliability, and inter-individual variability. If the aim is to reduce inter-individual variability, then the peak or mean EMG from the task under investigation should be used as the normalization reference value. However, the ability of such normalization methods to facilitate comparisons of EMGs is questionable. EMGs from MVCs can be as reliable as those from submaximal contractions, and do not appear to be affected by contraction mode or joint kinematics, particularly for the elbow flexors. Thus, the EMG from an isometric MVC is endorsed as a normalization reference value. Alternatively the EMG from a dynamic MVC can be used, although it is recognized that neither method is guaranteed to be able to reveal how active a muscle is in relation to its maximal activation capacity. Copyright © 2010 Elsevier Ltd. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              The extraction of neural strategies from the surface EMG: an update.

              A surface EMG signal represents the linear transformation of motor neuron discharge times by the compound action potentials of the innervated muscle fibers and is often used as a source of information about neural activation of muscle. However, retrieving the embedded neural code from a surface EMG signal is extremely challenging. Most studies use indirect approaches in which selected features of the signal are interpreted as indicating certain characteristics of the neural code. These indirect associations are constrained by limitations that have been detailed previously (Farina D, Merletti R, Enoka RM. J Appl Physiol 96: 1486-1495, 2004) and are generally difficult to overcome. In an update on these issues, the current review extends the discussion to EMG-based coherence methods for assessing neural connectivity. We focus first on EMG amplitude cancellation, which intrinsically limits the association between EMG amplitude and the intensity of the neural activation and then discuss the limitations of coherence methods (EEG-EMG, EMG-EMG) as a way to assess the strength of the transmission of synaptic inputs into trains of motor unit action potentials. The debated influence of rectification on EMG spectral analysis and coherence measures is also discussed. Alternatively, there have been a number of attempts to identify the neural information directly by decomposing surface EMG signals into the discharge times of motor unit action potentials. The application of this approach is extremely powerful, but validation remains a central issue.

                Author and article information

                +45-39-16-53-42 , mbp@nrcwe.dk
                +45-3916-5319 , lla@nrcwe.dk
                +45-9940-2411 , afsamani@hst.aau.dk
                +45-3916-5328 , mdj@nrcwe.dk
                +45-9940-8833 , pm@hst.aau.dk
                BMC Musculoskelet Disord
                BMC Musculoskelet Disord
                BMC Musculoskeletal Disorders
                BioMed Central (London )
                11 December 2017
                11 December 2017
                : 18
                [1 ]ISNI 0000 0000 9531 3915, GRID grid.418079.3, National Research Centre for the Working Environment, ; Lersø Parkalle 105, 2100 Copenhagen, Denmark
                [2 ]ISNI 0000 0001 0742 471X, GRID grid.5117.2, Physical Activity and Human Performance group - SMI, Department of Health Science and Technology, , Aalborg University, ; Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Funded by: The Danish Council for Independent Research
                Award ID: DFF – 4092-00320
                Award Recipient :
                Research Article
                Custom metadata
                © The Author(s) 2017


                Comment on this article