Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Management of the Cardiorenal Syndrome in Decompensated Heart Failure

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: The management of the cardiorenal syndrome (CRS) in decompensated heart failure (HF) is challenging, with high-quality evidence lacking. Summary: The pathophysiology of CRS in decompensated HF is complex, with glomerular filtration rate (GFR) and urine output representing different aspects of kidney function. GFR depends on structural factors (number of functional nephrons and integrity of the glomerular membrane) versus hemodynamic alterations (volume status, renal perfusion, arterial blood pressure, central venous pressure or intra-abdominal pressure) and neurohumoral activation. In contrast, urine output and volume homeostasis are mainly a function of the renal tubules. Treatment of CRS in decompensated HF patients should be individualized based on the underlying pathophysiological processes. Key Messages: Congestion, defined as elevated cardiac filling pressures, is not a surrogate for volume overload. Transient decreases in GFR might be accepted during decongestion, but hypotension must be avoided. Paracentesis and compression therapy are essential to remove fluid overload from third spaces. Increasing the effective circulatory volume improves renal function when cardiac output is depressed. As mechanical support is invasive and inotropes are related to increased mortality, afterload reduction through vasodilator therapy remains the preferred strategy in patients who are normo- or hypertensive. Specific therapies to augment renal perfusion (rolofylline, dopamine or nesiritide) have rendered disappointing results, but recently, serelaxin has been shown to improve renal function, even with a trend towards reduced all-cause mortality in selected patients. Diuretic resistance is associated with worse outcomes, independent of the underlying GFR. Combinational diuretic therapy, with ultrafiltration as a bail-out strategy, is indicated in case of diuretic resistance. i 2014 S. Karger AG, Basel

          Related collections

          Most cited references 53

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiorenal syndrome.

          The term cardiorenal syndrome (CRS) increasingly has been used without a consistent or well-accepted definition. To include the vast array of interrelated derangements, and to stress the bidirectional nature of heart-kidney interactions, we present a new classification of the CRS with 5 subtypes that reflect the pathophysiology, the time-frame, and the nature of concomitant cardiac and renal dysfunction. CRS can be generally defined as a pathophysiologic disorder of the heart and kidneys whereby acute or chronic dysfunction of 1 organ may induce acute or chronic dysfunction of the other. Type 1 CRS reflects an abrupt worsening of cardiac function (e.g., acute cardiogenic shock or decompensated congestive heart failure) leading to acute kidney injury. Type 2 CRS comprises chronic abnormalities in cardiac function (e.g., chronic congestive heart failure) causing progressive chronic kidney disease. Type 3 CRS consists of an abrupt worsening of renal function (e.g., acute kidney ischemia or glomerulonephritis) causing acute cardiac dysfunction (e.g., heart failure, arrhythmia, ischemia). Type 4 CRS describes a state of chronic kidney disease (e.g., chronic glomerular disease) contributing to decreased cardiac function, cardiac hypertrophy, and/or increased risk of adverse cardiovascular events. Type 5 CRS reflects a systemic condition (e.g., sepsis) causing both cardiac and renal dysfunction. Biomarkers can contribute to an early diagnosis of CRS and to a timely therapeutic intervention. The use of this classification can help physicians characterize groups of patients, provides the rationale for specific management strategies, and allows the design of future clinical trials with more accurate selection and stratification of the population under investigation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares.

            Central venous pressure (CVP) is used almost universally to guide fluid therapy in hospitalized patients. Both historical and recent data suggest that this approach may be flawed. A systematic review of the literature to determine the following: (1) the relationship between CVP and blood volume, (2) the ability of CVP to predict fluid responsiveness, and (3) the ability of the change in CVP (DeltaCVP) to predict fluid responsiveness. MEDLINE, Embase, Cochrane Register of Controlled Trials, and citation review of relevant primary and review articles. Reported clinical trials that evaluated either the relationship between CVP and blood volume or reported the associated between CVP/DeltaCVP and the change in stroke volume/cardiac index following a fluid challenge. From 213 articles screened, 24 studies met our inclusion criteria and were included for data extraction. The studies included human adult subjects, healthy control subjects, and ICU and operating room patients. Data were abstracted on study design, study size, study setting, patient population, correlation coefficient between CVP and blood volume, correlation coefficient (or receive operator characteristic [ROC]) between CVP/DeltaCVP and change in stroke index/cardiac index, percentage of patients who responded to a fluid challenge, and baseline CVP of the fluid responders and nonresponders. Metaanalytic techniques were used to pool data. The 24 studies included 803 patients; 5 studies compared CVP with measured circulating blood volume, while 19 studies determined the relationship between CVP/DeltaCVP and change in cardiac performance following a fluid challenge. The pooled correlation coefficient between CVP and measured blood volume was 0.16 (95% confidence interval [CI], 0.03 to 0.28). Overall, 56+/-16% of the patients included in this review responded to a fluid challenge. The pooled correlation coefficient between baseline CVP and change in stroke index/cardiac index was 0.18 (95% CI, 0.08 to 0.28). The pooled area under the ROC curve was 0.56 (95% CI, 0.51 to 0.61). The pooled correlation between DeltaCVP and change in stroke index/cardiac index was 0.11 (95% CI, 0.015 to 0.21). Baseline CVP was 8.7+/-2.32 mm Hg [mean+/-SD] in the responders as compared to 9.7+/-2.2 mm Hg in nonresponders (not significant). This systematic review demonstrated a very poor relationship between CVP and blood volume as well as the inability of CVP/DeltaCVP to predict the hemodynamic response to a fluid challenge. CVP should not be used to make clinical decisions regarding fluid management.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients.

              As a major component of uremic syndrome, cardiovascular disease is largely responsible for the high mortality observed in chronic kidney disease (CKD). Preclinical studies have evidenced an association between serum levels of indoxyl sulfate (IS, a protein-bound uremic toxin) and vascular alterations. The aim of this study is to investigate the association between serum IS, vascular calcification, vascular stiffness, and mortality in a cohort of CKD patients. One-hundred and thirty-nine patients (mean +/- SD age: 67 +/- 12; 60% male) at different stages of CKD (8% at stage 2, 26.5% at stage 3, 26.5% at stage 4, 7% at stage 5, and 32% at stage 5D) were enrolled. Baseline IS levels presented an inverse relationship with renal function and a direct relationship with aortic calcification and pulse wave velocity. During the follow-up period (605 +/- 217 d), 25 patients died, mostly because of cardiovascular events (n = 18). In crude survival analyses, the highest IS tertile was a powerful predictor of overall and cardiovascular mortality (P = 0.001 and 0.012, respectively). The predictive power of IS for death was maintained after adjustment for age, gender, diabetes, albumin, hemoglobin, phosphate, and aortic calcification. The study presented here indicates that IS may have a significant role in the vascular disease and higher mortality observed in CKD patients.
                Bookmark

                Author and article information

                Journal
                CRM
                Cardiorenal Med
                10.1159/issn.1664-5502
                Cardiorenal Medicine
                S. Karger AG
                1664-3828
                1664-5502
                2014
                December 2014
                03 October 2014
                : 4
                : 3-4
                : 176-188
                Affiliations
                aDepartment of Cardiology, Ziekenhuis Oost-Limburg, Genk, and bDoctoral School for Medicine and Life Sciences, and cBiomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
                Author notes
                *Wilfried Mullens, MD, PhD, Department of Cardiology, Ziekenhuis Oost-Limburg, Schiepse Bos 6, BE-3600 Genk (Belgium), E-Mail wilfried.mullens@zol.be
                Article
                366168 PMC4299260 Cardiorenal Med 2014;4:176-188
                10.1159/000366168
                PMC4299260
                25737682
                © 2014 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 2, Tables: 3, Pages: 13
                Categories
                Review

                Comments

                Comment on this article