7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Low-field magnetoelectric effect at room temperature.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The discoveries of gigantic ferroelectric polarization in BiFeO(3) (ref. 1) and ferroelectricity accompanied by a magnetic order in TbMnO(3) (ref. 2) have renewed interest in research on magnetoelectric multiferroics, materials in which magnetic and ferroelectric orders coexist, from both fundamental and technological points of view. Among several different types of magnetoelectric multiferroic, magnetically induced ferroelectrics in which ferroelectricity is induced by complex magnetic orders, such as spiral orders, exhibit giant magnetoelectric effects, remarkable changes in electric polarization in response to a magnetic field. Many magnetically induced ferroelectrics showing the magnetoelectric effects have been found in the past several years. From a practical point of view, however, their magnetoelectric effects are useless because they operate only far below room temperature (for example, 28 K in TbMnO(3) (ref. 2) and 230 K in CuO (ref. 11)). Furthermore, in most of them, the operating magnetic field is an order of tesla that is too high for practical applications. Here we report materials, Z-type hexaferrites, overcoming these problems on magnetically induced ferroelectrics. The best magnetoelectric properties were obtained for Sr(3)Co(2)Fe(24)O(41) ceramics sintered in oxygen, which exhibit a low-field magnetoelectric effect at room temperature. Our result represents an important step towards practical device applications using the magnetoelectric effects.

          Related collections

          Author and article information

          Journal
          Nat Mater
          Nature materials
          Springer Science and Business Media LLC
          1476-4660
          1476-1122
          Oct 2010
          : 9
          : 10
          Article
          nmat2826
          10.1038/nmat2826
          20693994
          6e4d7101-2451-403b-a380-0fe9db48f155
          History

          Comments

          Comment on this article

          Related Documents Log