15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rad51 inhibition sensitizes breast cancer stem cells to PARP inhibitor in triple-negative breast cancer

      research-article
      1 , 1 , 2 , 3 ,
      Chinese Journal of Cancer
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene, and its protein BRCA1 plays a role in DNA repair [1]. BRCA1 is generally expressed in the cells of mammary glands and other tissues, helping to repair damaged DNA or disrupting cells when DNA cannot be repaired. When BRCA1 is mutated and cannot function and therefore the damaged DNA cannot be repaired on time, the risk of breast cancer will greatly increase [2]. In BRCA1-mutant tumors, the capability of DNA damage repair is decreased, which makes tumor cells sensitive to DNA-damaging drugs; however, high BRCA1 activity weakens the effect of these drugs [3]. Poly(ADP-ribose) polymerase (PARP) is an enzyme that detects DNA single-strand breaks and mediates DNA repair. The inhibition of PARP leads to the accumulation of DNA fragmentation, especially in patients with loss of BRCA activity, and results in cells being killed by excessive DNA damage [4]. Preclinical models show that PARP inhibition selectively targets breast cancer cells lacking functional BRCA1 [5]. Accumulating evidence shows that cancer stem cells (CSCs) are responsible for the resistance to chemotherapeutic agents [6], but it is unknown whether targeted therapy (including PARP inhibition) has the same effect. As reported in the paper entitled “RAD51 mediates resistance of cancer stem cells to PARP inhibition in triple-negative breast cancer” [7] in a recent issue of Clinical Cancer Research, we found that PARP inhibitor (PARPi) only effectively targets BRCA1-mutant bulk tumor cells and RAD51, a gene involved in DNA double-strand break repair [8], mediates this process, but BRCA1-wild-type cancer cells and BRCA1-mutant CSCs are resistant to PARP inhibition. RAD51 knockdown (KD) sensitizes both BRCA1-mutant CSCs and BRCA1-wild-type cells to PARP inhibition. It suggests an effective therapeutic intervention for targeting triple-negative breast cancer (TNBC). In this study, we tested the cytotoxic effect of olaparib (a PARPi) on four TNBC cell lines including both BRCA1-mutant and BRCA1-wild-type cell lines: SUM149, SUM159, HCC1937, and MDA-MB-231. As expected, PARPi treatment resulted in fewer viable cells in BRCA1-mutant cell lines (SUM149 and HCC1937) compared with those with wild-type BRCA1 (SUM159 and MDAMB231). However, after 7 days of PARPi treatment in SUM149 and HCC1937 cells, the ALDEFLUOR-positive cells (i.e., CSCs) [9] was enriched, indicating that these cells were not affected by PARP inhibition. We thus performed an exploratory polymerase chain reaction array of 84 key DNA repair genes and found that RAD51 has higher expression in CSCs than in bulk tumor cells in SUM149 cells. We infected SUM149 and SUM159 cells with a doxycycline-inducible RAD51 short-hairpin RNA lentiviral system. Although not affecting CSC populations in SUM159 cells, RAD51 KD sensitized CSCs to PARPi in SUM149 cells. These results support our hypothesis that RAD51 mediates resistance of CSCs to PARPi in BRCA1-mutant and BRCA1-wild-type breast cancer cells. We next determined the effects of PARP inhibition and RAD51 KD in an in vivo model of TNBC. The mice were divided into four treatment groups: vehicle control, olaparib, RAD51 KD (doxycycline water), and combined (olaparib plus RAD51 KD). For the mice injected with BRCA1-mutant SUM149 cells, RAD51 KD and PARP inhibition significantly inhibited tumor growth in the early stage. However, when treatment was given after the tumor grew to a certain stage (2 mm in diameter), PARP inhibition was not effective, whereas the effect of RAD51 KD was still significant. The combination of RAD51 KD and PARPi led to a more robust inhibition of tumor growth. To assess the effects of PARP inhibition on the CSC frequency, serial dilutions of SUM149 cells (control and treated) were re-injected into mouse mammary fat pads [10]. Compared with vehicle control, RAD51 KD alone and combined treatments reduced the CSC frequency by 70% and 90%, respectively. There is a consistent result in BRCA1-wild-type SUM159-injected mice. Together, these results indicate that our therapeutic regimen targets both BRCA1-mutant CSCs and BRCA1-wild-type cells (both CSC and bulk tumor populations), supporting our in vitro findings of the involvement of RAD51 in resistance to olaparib and, importantly, suggesting an effective therapeutic intervention for targeting TNBC. In conclusion, we used in vitro models and mouse xenografts to demonstrate the importance of RAD51 in reversing PARPi resistance of CSCs in BRCA1-deficient and BRCA1-wild-type TNBC in this study. Our findings suggest that resistance to PARPi may be overcome by targeting both CSCs and bulk tumor cells. To elucidate the clinical implications, we will further use the breast cancer patient-derived xenograft model to validate our current findings. Furthermore, by targeting RAD51, it may be possible to greatly expand the sensitivity of TNBC to PARPi, beyond those with defective BRCA1 proteins. This novel approach holds potentials for significantly improved therapies for TNBC.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial.

          Olaparib is a novel, orally active poly(ADP-ribose) polymerase (PARP) inhibitor that induces synthetic lethality in homozygous BRCA-deficient cells. We aimed to assess the efficacy and safety of olaparib for treatment of advanced ovarian cancer in patients with BRCA1 or BRCA2 mutations. In this international, multicentre, phase 2 study, we enrolled two sequential cohorts of women (aged >or=18 years) with confirmed genetic BRCA1 or BRCA2 mutations, and recurrent, measurable disease. The study was undertaken in 12 centres in Australia, Germany, Spain, Sweden, and the USA. The first cohort (n=33) was given continuous oral olaparib at the maximum tolerated dose of 400 mg twice daily, and the second cohort (n=24) was given continuous oral olaparib at 100 mg twice daily. The primary efficacy endpoint was objective response rate (ORR). This study is registered with ClinicalTrials.gov, number NCT00494442. Patients had been given a median of three (range 1-16) previous chemotherapy regimens. ORR was 11 (33%) of 33 patients (95% CI 20-51) in the cohort assigned to olaparib 400 mg twice daily, and three (13%) of 24 (4-31) in the cohort assigned to 100 mg twice daily. In patients given olaparib 400 mg twice daily, the most frequent causally related adverse events were nausea (grade 1 or 2, 14 [42%]; grade 3 or 4, two [6%]), fatigue (grade 1 or 2, ten [30%]; grade 3 or 4, one [3%]), and anaemia (grade 1 or two, five [15%]; grade 3 or 4, one [3%]). The most frequent causally related adverse events in the cohort given 100 mg twice daily were nausea (grade 1 or 2, seven [29%]; grade 3 or 4, two [8%]) and fatigue (grade 1 or 2, nine [38%]; none grade 3 or 4). Findings from this phase 2 study provide positive proof of concept of the efficacy and tolerability of genetically targeted treatment with olaparib in BRCA-mutated advanced ovarian cancer. AstraZeneca. Copyright 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature.

            Tumors may be initiated and maintained by a cellular subcomponent that displays stem cell properties. We have used the expression of aldehyde dehydrogenase as assessed by the ALDEFLUOR assay to isolate and characterize cancer stem cell (CSC) populations in 33 cell lines derived from normal and malignant mammary tissue. Twenty-three of the 33 cell lines contained an ALDEFLUOR-positive population that displayed stem cell properties in vitro and in NOD/SCID xenografts. Gene expression profiling identified a 413-gene CSC profile that included genes known to play a role in stem cell function, as well as genes such as CXCR1/IL-8RA not previously known to play such a role. Recombinant interleukin-8 (IL-8) increased mammosphere formation and the ALDEFLUOR-positive population in breast cancer cell lines. Finally, we show that ALDEFLUOR-positive cells are responsible for mediating metastasis. These studies confirm the hierarchical organization of immortalized cell lines, establish techniques that can facilitate the characterization of regulatory pathways of CSCs, and identify potential stem cell markers and therapeutic targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The BRCA1/2 pathway prevents hematologic cancers in addition to breast and ovarian cancers

              Background The present study was designed to test the hypothesis that inactivation of virtually any component within the pathway containing the BRCA1 and BRCA2 proteins would increase the risks for lymphomas and leukemias. In people who do not have BRCA1 or BRCA2 gene mutations, the encoded proteins prevent breast/ovarian cancer. However BRCA1 and BRCA2 proteins have multiple functions including participating in a pathway that mediates repair of DNA double strand breaks by error-free methods. Inactivation of BRCA1, BRCA2 or any other critical protein within this "BRCA pathway" due to a gene mutation should inactivate this error-free repair process. DNA fragments produced by double strand breaks are then left to non-specific processes that rejoin them without regard for preserving normal gene regulation or function, so rearrangements of DNA segments are more likely. These kinds of rearrangements are typically associated with some lymphomas and leukemias. Methods Literature searches produced about 2500 epidemiology and basic science articles related to the BRCA pathway. These articles were reviewed and copied to a database to facilitate access. Meta-analyses of statistical information compared risks for hematologic cancers vs. mutations for the components in a model pathway containing BRCA1/2 gene products. Results Deleterious mutations of genes encoding proteins virtually anywhere within the BRCA pathway increased risks up to nearly 2000 fold for certain leukemias and lymphomas. Cancers with large increases in risk included mantle cell lymphoma, acute myeloid leukemia, acute lymphocytic leukemia, chronic lymphocytic leukemia, and prolymphocytic leukemia. Mantle cell lymphoma is defined by a characteristic rearrangement of DNA fragments interchanged between chromosomes 11 and 14. DNA translocations or rearrangements also occur in significant percentages of the other cancers. Conclusion An important function of the BRCA pathway is to prevent a subgroup of human leukemias and lymphomas that may involve non-random, characteristic gene rearrangements. Here, the genetic defect in BRCA pathway deficiencies is a chromosomal misrepair syndrome that may facilitate this subgroup of somatic cancers. Inactivation of a single gene within the pathway can increase risks for multiple cancers and inactivation of a different gene in the same pathway may have similar effects. The results presented here may have clinical implications for surveillance and therapy.
                Bookmark

                Author and article information

                Contributors
                dw2009@mail.ustc.edu.cn
                duruikai@mail.ustc.edu.cn
                +86-21-34771023 , suling@fudan.edu.cn
                Journal
                Chin J Cancer
                Chin J Cancer
                Chinese Journal of Cancer
                BioMed Central (London )
                1000-467X
                1944-446X
                30 March 2017
                30 March 2017
                2017
                : 36
                : 37
                Affiliations
                [1 ]GRID grid.59053.3a, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Science and Medical Center, , University of Science & Technology of China, ; Hefei, 230027 Anhui P. R. China
                [2 ]GRID grid.452404.3, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, , Department of Breast Surgery, Fudan University Shanghai Cancer Center, ; Shanghai, 200032 P. R. China
                [3 ]GRID grid.8547.e, Institutes of Biomedical Sciences, , Fudan University, ; Shanghai, 200032 P. R. China
                Article
                204
                10.1186/s40880-017-0204-9
                5372300
                6e4df327-9dd9-47b0-a548-88cb56cc234e
                © The Author(s) 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 1 March 2017
                : 27 March 2017
                Categories
                Research Highlight
                Custom metadata
                © The Author(s) 2017

                Comments

                Comment on this article