61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Gut Microbiome and Its Potential Role in the Development and Function of Newborn Calf Gastrointestinal Tract

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A diverse microbial population colonizes the sterile mammalian gastrointestinal tract during and after the birth. There is increasing evidence that this complex microbiome plays a crucial role in the development of the mucosal immune system and influences newborn health. Microbial colonization is a complex process influenced by a two-way interaction between host and microbes and a variety of external factors, including maternal microbiota, birth process, diet, and antibiotics. Following this initial colonization, continuous exposure to host-specific microbes is not only essential for development and maturation of the mucosal immune system but also the nutrition and health of the animal. Thus, it is important to understand host–microbiome interactions within the context of individual animal species and specific management practices. Data is now being generated revealing significant associations between the early microbiome, development of the mucosal immune system, and the growth and health of newborn calves. The current review focuses on recent information and discusses the limitation of current data and the potential challenges to better characterizing key host-specific microbial interactions. We also discuss potential strategies that may be used to manipulate the early microbiome to improve production and health during the time when newborn calves are most susceptible to enteric disease.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis.

          Toll-like receptors (TLRs) play a crucial role in host defense against microbial infection. The microbial ligands recognized by TLRs are not unique to pathogens, however, and are produced by both pathogenic and commensal microorganisms. It is thought that an inflammatory response to commensal bacteria is avoided due to sequestration of microflora by surface epithelia. Here, we show that commensal bacteria are recognized by TLRs under normal steady-state conditions, and this interaction plays a crucial role in the maintenance of intestinal epithelial homeostasis. Furthermore, we find that activation of TLRs by commensal microflora is critical for the protection against gut injury and associated mortality. These findings reveal a novel function of TLRs-control of intestinal epithelial homeostasis and protection from injury-and provide a new perspective on the evolution of host-microbial interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A microbial symbiosis factor prevents intestinal inflammatory disease.

            Humans are colonized by multitudes of commensal organisms representing members of five of the six kingdoms of life; however, our gastrointestinal tract provides residence to both beneficial and potentially pathogenic microorganisms. Imbalances in the composition of the bacterial microbiota, known as dysbiosis, are postulated to be a major factor in human disorders such as inflammatory bowel disease. We report here that the prominent human symbiont Bacteroides fragilis protects animals from experimental colitis induced by Helicobacter hepaticus, a commensal bacterium with pathogenic potential. This beneficial activity requires a single microbial molecule (polysaccharide A, PSA). In animals harbouring B. fragilis not expressing PSA, H. hepaticus colonization leads to disease and pro-inflammatory cytokine production in colonic tissues. Purified PSA administered to animals is required to suppress pro-inflammatory interleukin-17 production by intestinal immune cells and also inhibits in vitro reactions in cell cultures. Furthermore, PSA protects from inflammatory disease through a functional requirement for interleukin-10-producing CD4+ T cells. These results show that molecules of the bacterial microbiota can mediate the critical balance between health and disease. Harnessing the immunomodulatory capacity of symbiosis factors such as PSA might potentially provide therapeutics for human inflammatory disorders on the basis of entirely novel biological principles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools.

              The temporal sequence of microbial establishment in the rumen of the neonatal ruminant has important ecological and pathophysiological implications. In this study, we characterized the rumen microbiota of pre-ruminant calves fed milk replacer using two approaches, pyrosequencing of hypervariable V3-V5 regions of the 16S rRNA gene and whole-genome shotgun approach. Fifteen bacterial phyla were identified in the microbiota of pre-ruminant calves. Bacteroidetes was the predominant phylum in the rumen microbiota of 42-day-old calves, representing 74.8% of the 16S sequences, followed by Firmicutes (12.0%), Proteobacteria (10.4%), Verrucomicrobia (1.2%) and Synergistetes (1.1%). However, the phylum-level composition of 14-day-old calves was distinctly different. A total of 170 bacterial genera were identified while the core microbiome of pre-ruminant calves included 45 genera. Rumen development seemingly had a significant impact on microbial diversity. The dazzling functional diversity of the rumen microbiota was reflected by identification of 8298 Pfam and 3670 COG protein families. The rumen microbiota of pre-ruminant calves displayed a considerable compositional heterogeneity during early development. This is evidenced by a profound difference in rumen microbial composition between the two age groups. However, all functional classes between the two age groups had a remarkably similar assignment, suggesting that rumen microbial communities of pre-ruminant calves maintained a stable function and metabolic potentials while their phylogenetic composition fluctuated greatly. The presence of all major types of rumen microorganisms suggests that the rumen of pre-ruminant calves may not be rudimentary. Our results provide insight into rumen microbiota dynamics and will facilitate efforts in formulating optimal early-weaning strategies. Published 2011. This article is a US Government work and is in the public domain in the USA.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Vet Sci
                Front Vet Sci
                Front. Vet. Sci.
                Frontiers in Veterinary Science
                Frontiers Media S.A.
                2297-1769
                23 September 2015
                2015
                : 2
                : 36
                Affiliations
                [1] 1Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, AB, Canada
                [2] 2Vaccine and Infectious Disease Organization, University of Saskatchewan , Saskatoon, SK, Canada
                [3] 3School of Public Health, University of Saskatchewan , Saskatoon, SK, Canada
                Author notes

                Edited by: Michael Kogut, Agricultural Research Service, United States Department of Agriculture, USA

                Reviewed by: Christi Swaggerty, United States Department of Agriculture, USA; Franck Carbonero, University of Arkansas, USA

                *Correspondence: Le Luo Guan, 4-16F Agriculture/Forestry Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada, lguan@ 123456ualberta.ca

                Specialty section: This article was submitted to Veterinary Infectious Diseases, a section of the journal Frontiers in Veterinary Science

                Article
                10.3389/fvets.2015.00036
                4672224
                26664965
                6e5159e0-921d-49f0-b446-135b8491c171
                Copyright © 2015 Malmuthuge, Griebel and Guan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 July 2015
                : 03 September 2015
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 74, Pages: 10, Words: 8838
                Categories
                Veterinary Science
                Review

                gut microbiota,neonatal ruminants,gut development,mucosal immune system,enteric infections

                Comments

                Comment on this article