6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bimodal antibacterial system based on quaternary ammonium silane-coupled core-shell hollow mesoporous silica

      , , , , , ,
      Acta Biomaterialia
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hollow mesoporous silica (HMS) have been extensively investigated as a biomaterial for drug delivery. The present study developed quaternary ammonium silane-grafted hollow mesoporous silica (QHMS) to create a metronidazole (MDZ) sustained delivery system, MDZ@QHMS, with bimodal, contact-kill and release-kill capability. The QHMS was assembled through a self-templating method. Metronidazole was incorporated within the QHMS core using solvent evaporation. Antibacterial activities of the MDZ@QHMS were investigated using single-species biofilms of Staphylococcus aureus (ATCC25923), Escherichia coli (ATCC25922) and Porphyromonas gingivalis (ATCC33277). The MDZ@QHMS maintained a hollow mesoporous structure and demonstrated sustained drug release and bacteridal actvity against the three bacterial strains at a concentration of 100 μg/mL or above. These nanoparticles were not relatively cytotoxic to human gingival fibroblasts when employed below 100 µg/mL. Compared with HMS, the MDZ@QHMS system at the same concentration demonstrated antibiotic-elution and contact-killing bimodal antibacterial activities. The synthesized drug carrier with sustained, bimodal antibacterial function and minimal cytotoxicity possesses potential for localized antibiotic applications. STATEMENT OF SIGNIFICANCE: The present study develops quaternary ammonium silane-grafted hollow mesoporous silica (QHMS) to create a metronidazole (MDZ) sustained delivery system, MDZ@QHMS, with bimodal, contact-kill and release-kill capability. This system demonstrates sustained drug release and maintained a hollow mesoporous structure. The synthesized drug carrier with sustained, bimodal antibacterial function and excellent biocompatibility possesses potential for localized antibiotic applications.

          Related collections

          Author and article information

          Journal
          Acta Biomaterialia
          Acta Biomaterialia
          Elsevier BV
          17427061
          December 2018
          December 2018
          Article
          10.1016/j.actbio.2018.12.037
          30593887
          6e545c06-87d1-41ff-bc24-23f746a26c00
          © 2018

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article