29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Trimethylamine-N-oxide (TMAO), a metabolite linked to the gut microbiota, is associated with excess risk of heart disease. We hypothesized that (i) TMAO response to animal source foods would vary among healthy men and (ii) this response would be modified by their gut microbiome.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.

          The ongoing revolution in high-throughput sequencing continues to democratize the ability of small groups of investigators to map the microbial component of the biosphere. In particular, the coevolution of new sequencing platforms and new software tools allows data acquisition and analysis on an unprecedented scale. Here we report the next stage in this coevolutionary arms race, using the Illumina GAIIx platform to sequence a diverse array of 25 environmental samples and three known "mock communities" at a depth averaging 3.1 million reads per sample. We demonstrate excellent consistency in taxonomic recovery and recapture diversity patterns that were previously reported on the basis of metaanalysis of many studies from the literature (notably, the saline/nonsaline split in environmental samples and the split between host-associated and free-living communities). We also demonstrate that 2,000 Illumina single-end reads are sufficient to recapture the same relationships among samples that we observe with the full dataset. The results thus open up the possibility of conducting large-scale studies analyzing thousands of samples simultaneously to survey microbial communities at an unprecedented spatial and temporal resolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transmission of atherosclerosis susceptibility with gut microbial transplantation.

            Recent studies indicate both clinical and mechanistic links between atherosclerotic heart disease and intestinal microbial metabolism of certain dietary nutrients producing trimethylamine N-oxide (TMAO). Here we test the hypothesis that gut microbial transplantation can transmit choline diet-induced TMAO production and atherosclerosis susceptibility. First, a strong association was noted between atherosclerotic plaque and plasma TMAO levels in a mouse diversity panel (n = 22 strains, r = 0.38; p = 0.0001). An atherosclerosis-prone and high TMAO-producing strain, C57BL/6J, and an atherosclerosis-resistant and low TMAO-producing strain, NZW/LacJ, were selected as donors for cecal microbial transplantation into apolipoprotein e null mice in which resident intestinal microbes were first suppressed with antibiotics. Trimethylamine (TMA) and TMAO levels were initially higher in recipients on choline diet that received cecal microbes from C57BL/6J inbred mice; however, durability of choline diet-dependent differences in TMA/TMAO levels was not maintained to the end of the study. Mice receiving C57BL/6J cecal microbes demonstrated choline diet-dependent enhancement in atherosclerotic plaque burden as compared with recipients of NZW/LacJ microbes. Microbial DNA analyses in feces and cecum revealed transplantation of donor microbial community features into recipients with differences in taxa proportions between donor strains that were transmissible to recipients and that tended to show coincident proportions with TMAO levels. Proportions of specific taxa were also identified that correlated with plasma TMAO levels in donors and recipients and with atherosclerotic lesion area in recipients. Atherosclerosis susceptibility may be transmitted via transplantation of gut microbiota. Gut microbes may thus represent a novel therapeutic target for modulating atherosclerosis susceptibility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Archaebiotics

              Trimethylamine (TMA) is produced by gut bacteria from dietary ingredients. In individuals with a hereditary defect in flavin-containing monooxygenase 3, bacterial TMA production is believed to contribute to the symptoms of trimethylaminuria (TMAU; fish-odor syndrome). Intestinal microbiota TMA metabolism may also modulate atherosclerosis risk by affecting trimethylamine oxide (TMAO) production levels. We propose that reducing TMA formation in the gut by converting it to an inert molecule could be used to prevent or limit these human diseases, while avoiding the major drawbacks of other clinical interventions. Reducing TMA levels by microbiological interventions could also be helpful in some vaginoses. Particular members of a recently discovered group of methanogens, that are variably present in the human gut, are unusual in being apparently restricted to utilizing only methyl compounds including TMA as substrates. We confirmed experimentally that one of these strains tested, Methanomassiliicoccus luminyensis B10, is able to deplete TMA, by reducing it with H2 for methanogenesis. We therefore suggest that members of this archaeal lineage could be used as treatments for metabolic disorders.
                Bookmark

                Author and article information

                Journal
                Molecular Nutrition & Food Research
                Mol. Nutr. Food Res.
                Wiley
                16134125
                January 2017
                January 2017
                August 03 2016
                : 61
                : 1
                : 1600324
                Affiliations
                [1 ]Division of Nutritional Sciences; Cornell University; Ithaca NY USA
                [2 ]Department of Microbiology; Cornell University; Ithaca NY USA
                Article
                10.1002/mnfr.201600324
                27377678
                6e5f8e91-838e-4cec-a695-7e315d592bfc
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1

                http://onlinelibrary.wiley.com/termsAndConditions

                History

                Comments

                Comment on this article