21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      JNK is a novel regulator of intercellular adhesion

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          c-Jun N-terminal Kinase (JNK) is a family of protein kinases, which are activated by stress stimuli such as inflammation, heat stress and osmotic stress, and regulate diverse cellular processes including proliferation, survival and apoptosis. In this review, we focus on a recently discovered function of JNK as a regulator of intercellular adhesion. We summarize the existing knowledge regarding the role of JNK during the formation of cell-cell junctions. The potential mechanisms and implications for processes requiring dynamic formation and dissolution of cell-cell junctions including wound healing, migration, cancer metastasis and stem cell differentiation are also discussed.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Cell adhesion: the molecular basis of tissue architecture and morphogenesis.

          A variety of cell adhesion mechanisms underlie the way that cells are organized in tissues. Stable cell interactions are needed to maintain the structural integrity of tissues, and dynamic changes in cell adhesion participate in the morphogenesis of developing tissues. Stable interactions actually require active adhesion mechanisms that are very similar to those involved in tissue dynamics. Adhesion mechanisms are highly regulated during tissue morphogenesis and are intimately related to the processes of cell motility and cell migration. In particular, the cadherins and the integrins have been implicated in the control of cell movement. Cadherin mediated cell compaction and cellular rearrangements may be analogous to integrin-mediated cell spreading and motility on the ECM. Regulation of cell adhesion can occur at several levels, including affinity modulation, clustering, and coordinated interactions with the actin cytoskeleton. Structural studies have begun to provide a picture of how the binding properties of adhesion receptors themselves might be regulated. However, regulation of tissue morphogenesis requires complex interactions between the adhesion receptors, the cytoskeleton, and networks of signaling pathways. Signals generated locally by the adhesion receptors themselves are involved in the regulation of cell adhesion. These regulatory pathways are also influenced by extrinsic signals arising from the classic growth factor receptors. Furthermore, signals generated locally be adhesion junctions can interact with classic signal transduction pathways to help control cell growth and differentiation. This coupling between physical adhesion and developmental signaling provides a mechanism to tightly integrate physical aspects of tissue morphogenesis with cell growth and differentiation, a coordination that is essential to achieve the intricate patterns of cells in tissues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The tight junction: a multifunctional complex.

            Multicellular organisms are separated from the external environment by a layer of epithelial cells whose integrity is maintained by intercellular junctional complexes composed of tight junctions, adherens junctions, and desmosomes, whereas gap junctions provide for intercellular communication. The aim of this review is to present an updated overview of recent developments in the area of tight junction biology. In a relatively short time, our knowledge of the tight junction has evolved from a relatively simple view of it being a permeability barrier in the paracellular space and a fence in the plane of the plasma membrane to one of it acting as a multicomponent, multifunctional complex that is involved in regulating numerous and diverse cell functions. A group of integral membrane proteins-occludin, claudins, and junction adhesion molecules-interact with an increasingly complex array of tight junction plaque proteins not only to regulate paracellular solute and water flux but also to integrate such diverse processes as gene transcription, tumor suppression, cell proliferation, and cell polarity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The stress-activated protein kinase subfamily of c-Jun kinases.

              The mitogen-activated protein (MAP) kinases Erk-1 and Erk-2 are proline-directed kinases that are themselves activated through concomitant phosphorylation of tyrosine and threonine residues. The kinase p54 (M(r) 54,000), which was first isolated from cycloheximide-treated rats, is proline-directed like Erks-1/2, and requires both Tyr and Ser/Thr phosphorylation for activity. p54 is, however, distinct from Erks-1/2 in its substrate specificity, being unable to phosphorylate pp90rsk but more active in phosphorylating the c-Jun transactivation domain. Molecular cloning of p54 reveals a unique subfamily of extracellularly regulated kinases. Although they are 40-45% identical in sequence to Erks-1/2, unlike Erks-1/2 the p54s are only poorly activated in most cells by mitogens or phorbol esters. However, p54s are the principal c-Jun N-terminal kinases activated by cellular stress and tumour necrosis factor (TNF)-alpha, hence they are designated stress-activated protein kinases, or SAPKs. SAPKs are also activated by sphingomyelinase, which elicits a subset of cellular responses to TNF-alpha (ref. 9). SAPKs therefore define a new TNF-alpha and stress-activated signalling pathway, possibly initiated by sphingomyelin-based second messengers, which regulates the activity of c-Jun.
                Bookmark

                Author and article information

                Journal
                Tissue Barriers
                Tissue Barriers
                TISBAR
                Tissue Barriers
                Landes Bioscience
                2168-8362
                2168-8370
                01 December 2013
                17 October 2013
                : 1
                : 5
                : e26845
                Affiliations
                [1 ]Bioengineering Laboratory; Department of Chemical and Biological Engineering; University at Buffalo; The State University of New York; Amherst, NY USA
                [2 ]Department of Biomedical Engineering; University at Buffalo; The State University of New York; Amherst, NY USA
                [3 ]Center for Excellence in Bioinformatics and Life Sciences; University at Buffalo; The State University of New York; Amherst, NY USA
                Author notes
                [* ]Correspondence to: Stelios T Andreadis, Email: sandread@ 123456buffalo.edu
                Article
                2013TISSBARRIER043R 26845
                10.4161/tisb.26845
                3942331
                24868495
                6e66f413-d7c5-4d91-8745-0610db9baffb
                Copyright © 2013 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 09 September 2013
                : 16 October 2013
                : 16 October 2013
                Categories
                Review

                jnk,adherens junction,cell-cell adhesion,substrate stiffness,intercellular signaling

                Comments

                Comment on this article