84
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing.

      Science (New York, N.Y.)
      Adenocarcinoma, genetics, pathology, DNA Mutational Analysis, Exome, Genes, Neoplasm, Genetic Heterogeneity, Humans, Lung Neoplasms, Mutation, Neoplasm Recurrence, Local

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancers are composed of populations of cells with distinct molecular and phenotypic features, a phenomenon termed intratumor heterogeneity (ITH). ITH in lung cancers has not been well studied. We applied multiregion whole-exome sequencing (WES) on 11 localized lung adenocarcinomas. All tumors showed clear evidence of ITH. On average, 76% of all mutations and 20 out of 21 known cancer gene mutations were identified in all regions of individual tumors, which suggested that single-region sequencing may be adequate to identify the majority of known cancer gene mutations in localized lung adenocarcinomas. With a median follow-up of 21 months after surgery, three patients have relapsed, and all three patients had significantly larger fractions of subclonal mutations in their primary tumors than patients without relapse. These data indicate that a larger subclonal mutation fraction may be associated with increased likelihood of postsurgical relapse in patients with localized lung adenocarcinomas. Copyright © 2014, American Association for the Advancement of Science.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Performance comparison of benchtop high-throughput sequencing platforms.

          Three benchtop high-throughput sequencing instruments are now available. The 454 GS Junior (Roche), MiSeq (Illumina) and Ion Torrent PGM (Life Technologies) are laser-printer sized and offer modest set-up and running costs. Each instrument can generate data required for a draft bacterial genome sequence in days, making them attractive for identifying and characterizing pathogens in the clinical setting. We compared the performance of these instruments by sequencing an isolate of Escherichia coli O104:H4, which caused an outbreak of food poisoning in Germany in 2011. The MiSeq had the highest throughput per run (1.6 Gb/run, 60 Mb/h) and lowest error rates. The 454 GS Junior generated the longest reads (up to 600 bases) and most contiguous assemblies but had the lowest throughput (70 Mb/run, 9 Mb/h). Run in 100-bp mode, the Ion Torrent PGM had the highest throughput (80–100 Mb/h). Unlike the MiSeq, the Ion Torrent PGM and 454 GS Junior both produced homopolymer-associated indel errors (1.5 and 0.38 errors per 100 bases, respectively).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emerging patterns of somatic mutations in cancer.

            Recent advances in technological tools for massively parallel, high-throughput sequencing of DNA have enabled the comprehensive characterization of somatic mutations in a large number of tumour samples. In this Review, we describe recent cancer genomic studies that have assembled emerging views of the landscapes of somatic mutations through deep-sequencing analyses of the coding exomes and whole genomes in various cancer types. We discuss the comparative genomics of different cancers, including mutation rates and spectra, as well as the roles of environmental insults that influence these processes. We highlight the developing statistical approaches that are used to identify significantly mutated genes, and discuss the emerging biological and clinical insights from such analyses, as well as the future challenges of translating these genomic data into clinical impacts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Intratumor heterogeneity: seeing the wood for the trees.

              Most advanced solid tumors remain incurable, with resistance to chemotherapeutics and targeted therapies a common cause of poor clinical outcome. Intratumor heterogeneity may contribute to this failure by initiating phenotypic diversity enabling drug resistance to emerge and by introducing tumor sampling bias. Envisaging tumor growth as a Darwinian tree with the trunk representing ubiquitous mutations and the branches representing heterogeneous mutations may help in drug discovery and the development of predictive biomarkers of drug response.
                Bookmark

                Author and article information

                Journal
                25301631
                4354858
                10.1126/science.1256930

                Chemistry
                Adenocarcinoma,genetics,pathology,DNA Mutational Analysis,Exome,Genes, Neoplasm,Genetic Heterogeneity,Humans,Lung Neoplasms,Mutation,Neoplasm Recurrence, Local

                Comments

                Comment on this article