12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New Insights into Tumor-Infiltrating B Lymphocytes in Breast Cancer: Clinical Impacts and Regulatory Mechanisms

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Currently, tumor-infiltrating B lymphocytes have been recognized as a new hallmark of breast cancer (BC). The function seems to be controversial, either with positive, negative, or no significance in BC’s prediction and prognosis. Moreover, B-cell infiltrates regulate tumor process through productions of antibodies and interleukin-10. The interactions with other lymphocytes and programmed death-1/PD-1 ligand axis are also documented. The regulatory mechanisms will eventually be incorporated into diagnostic and therapeutic algorithms, thus give guide to clinical treatment. In this review, we give new insights into clinical impacts and regulatory mechanisms of tumor-infiltrating B cells, which heralds a new era in immuno-oncology in BC treatment.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer.

          PURPOSE Preclinical data suggest a contribution of the immune system to chemotherapy response. In this study, we investigated the prespecified hypothesis that the presence of a lymphocytic infiltrate in cancer tissue predicts the response to neoadjuvant chemotherapy. METHODS We investigated intratumoral and stromal lymphocytes in a total of 1,058 pretherapeutic breast cancer core biopsies from two neoadjuvant anthracycline/taxane-based studies (GeparDuo, n = 218, training cohort; and GeparTrio, n = 840, validation cohort). Molecular parameters of lymphocyte recruitment and activation were evaluated by kinetic polymerase chain reaction in 134 formalin-fixed, paraffin-embedded tumor samples. Results In a multivariate regression analysis including all known predictive clinicopathologic factors, the percentage of intratumoral lymphocytes was a significant independent parameter for pathologic complete response (pCR) in both cohorts (training cohort: P = .012; validation cohort: P = .001). Lymphocyte-predominant breast cancer responded, with pCR rates of 42% (training cohort) and 40% (validation cohort). In contrast, those tumors without any infiltrating lymphocytes had pCR rates of 3% (training cohort) and 7% (validation cohort). The expression of inflammatory marker genes and proteins was linked to the histopathologic infiltrate, and logistic regression showed a significant association of the T-cell-related markers CD3D and CXCL9 with pCR. CONCLUSION The presence of tumor-associated lymphocytes in breast cancer is a new independent predictor of response to anthracycline/taxane neoadjuvant chemotherapy and provides useful information for oncologists to identify a subgroup of patients with a high benefit from this type of chemotherapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer.

            Recent studies in multiple epithelial cancers have shown that the inhibitory receptor programmed cell death 1 (PD-1) is expressed on tumor-infiltrating lymphocytes and/or programmed death ligand 1 (PD-L1) is expressed on tumor cells, suggesting that antitumor immunity may be modulated by the PD-1/PD-L1 signaling pathway. In addition, phase 1 clinical trials with monoclonal antibodies targeting PD-1 or PD-L1 have shown promising results in several human cancers. The purpose of this study was to investigate the impact of PD-L1 expression in human breast cancer specimens. We conducted an immunohistochemistry study using a tissue microarray encompassing 650 evaluable formalin-fixed breast cancer cases with detailed clinical annotation and outcomes data. PD-L1 was expressed in 152 (23.4 %) of the 650 breast cancer specimens. Expression was significantly associated with age, tumor size, AJCC primary tumor classification, tumor grade, lymph node status, absence of ER expression, and high Ki-67 expression. In univariate analysis, PD-L1 expression was associated with a significantly worse OS. In multivariate analysis, PD-L1 expression remained an independent negative prognostic factor for OS. In subset analyses, expression of PD-L1 was associated with significantly worse OS in the luminal B HER2(-) subtype, the luminal B HER2(+) subtype, the HER2 subtype, and the basal-like subtype. This is the first study to demonstrate that PD-L1 expression is an independent negative prognostic factor in human breast cancer. This finding has important implications for the application of antibody therapies targeting the PD-1/PD-L1 signaling pathway in this disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production.

              Programmed death-1 ligand (PD-L)1 and PD-L2 are ligands for programmed death-1 (PD-1), a member of the CD28/CTLA4 family expressed on activated lymphoid cells. PD-1 contains an immunoreceptor tyrosine-based inhibitory motif and mice deficient in PD-1 develop autoimmune disorders suggesting a defect in peripheral tolerance. Human PD-L1 and PD-L2 are expressed on immature dendritic cells (iDC) and mature dendritic cells (mDC), IFN-gamma-treated monocytes, and follicular dendritic cells. Using mAbs, we show that blockade of PD-L2 on dendritic cells results in enhanced T cell proliferation and cytokine production, including that of IFN-gamma and IL-10, while blockade of PD-L1 results in similar, more modest, effects. Blockade of both PD-L1 and PD-L2 showed an additive effect. Both whole mAb and Fab enhanced T cell activation, showing that PD-L1 and PD-L2 function to inhibit T cell activation. Enhancement of T cell activation was most pronounced with weak APC, such as iDCs and IL-10-pretreated mDCs, and less pronounced with strong APC such as mDCs. These data are consistent with the hypothesis that iDC have a balance of stimulatory vs inhibitory molecules that favors inhibition, and indicate that PD-L1 and PD-L2 contribute to the poor stimulatory capacity of iDC. PD-L1 expression differs from PD-L2 in that PD-L1 is expressed on activated T cells, placental trophoblasts, myocardial endothelium, and cortical thymic epithelial cells. In contrast, PD-L2 is expressed on placental endothelium and medullary thymic epithelial cells. PD-L1 is also highly expressed on most carcinomas but minimally expressed on adjacent normal tissue suggesting a role in attenuating antitumor immune responses.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                08 March 2018
                2018
                : 9
                : 470
                Affiliations
                [1] 1Department of Immunology, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
                [2] 2National Clinical Research Center for Cancer , Tianjin, China
                [3] 3Key Laboratory of Cancer Prevention and Therapy , Tianjin, China
                [4] 4Tianjin’s Clinical Research Center for Cancer , Tianjin, China
                [5] 5Key Laboratory of Cancer Immunology and Biotherapy , Tianjin, China
                [6] 6Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
                Author notes

                Edited by: Ana María Hernández, Center of Molecular Immunology (CIM), Cuba

                Reviewed by: Kay L. Medina, Mayo Clinic Minnesota, United States; Kang Chen, Wayne State University, United States

                *Correspondence: Xiubao Ren, renxiubao@ 123456tjmuch.com

                Specialty section: This article was submitted to B Cell Biology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2018.00470
                5852074
                29568299
                6e737f09-c017-4f09-8fe6-7a2c72d3f11d
                Copyright © 2018 Shen, Wang and Ren.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 December 2017
                : 21 February 2018
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 60, Pages: 8, Words: 6651
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81472471, 81272221
                Categories
                Immunology
                Mini Review

                Immunology
                tumor-infiltrating b lymphocytes,breast cancer,prognosis,regulatory mechanism,checkpoint molecules

                Comments

                Comment on this article