14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The MicroRNA319d/TCP10 Node Regulates the Common Bean – Rhizobia Nitrogen-Fixing Symbiosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Micro-RNAs from legume plants are emerging as relevant regulators of the rhizobia nitrogen-fixing symbiosis. In this work we functionally characterized the role of the node conformed by micro-RNA319 (miR319) – TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factor in the common bean ( Phaseolus vulgaris) – Rhizobium tropici symbiosis. The miR319d, one of nine miR319 isoforms from common bean, was highly expressed in root and nodules from inoculated plants as compared to roots from fertilized plants. The miR319d targets TCP10 (Phvul.005G067950), identified by degradome analysis, whose expression showed a negative correlation with miR319d expression. The phenotypic analysis of R. tropici-inoculated composite plants with transgenic roots/nodules overexpressing or silencing the function of miR319d demonstrated the relevant role of the miR319d/TCP10 node in the common bean rhizobia symbiosis. Increased miR319d resulted in reduced root length/width ratio, increased rhizobial infection evidenced by more deformed root hairs and infection threads, and decreased nodule formation and nitrogenase activity per plant. In addition, these plants with lower TCP10 levels showed decreased expression level of the jasmonic acid (JA) biosynthetic gene: LOX2. The transcription of LOX2 by TCPs has been demonstrated for Arabidopsis and in several plants LOX2 level and JA content have been associate with TCP levels. On this basis, we propose that in roots/nodules of inoculated common bean plants TCP10 could be the transcriptional regulator of LOX2 and the miR319d/TCP10 node could affect nodulation through JA signaling. However, given the complexity of nodulation, the participation of other signaling pathways in the phenotypes observed cannot be ruled out.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development.

          Jasmonates are ubiquitously occurring lipid-derived compounds with signal functions in plant responses to abiotic and biotic stresses, as well as in plant growth and development. Jasmonic acid and its various metabolites are members of the oxylipin family. Many of them alter gene expression positively or negatively in a regulatory network with synergistic and antagonistic effects in relation to other plant hormones such as salicylate, auxin, ethylene and abscisic acid. This review summarizes biosynthesis and signal transduction of jasmonates with emphasis on new findings in relation to enzymes, their crystal structure, new compounds detected in the oxylipin and jasmonate families, and newly found functions. Crystal structure of enzymes in jasmonate biosynthesis, increasing number of jasmonate metabolites and newly identified components of the jasmonate signal-transduction pathway, including specifically acting transcription factors, have led to new insights into jasmonate action, but its receptor(s) is/are still missing, in contrast to all other plant hormones.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biogenesis, turnover, and mode of action of plant microRNAs.

            MicroRNAs (miRNAs) are small RNAs that control gene expression through silencing of target mRNAs. Mature miRNAs are processed from primary miRNA transcripts by the endonuclease activity of the DICER-LIKE1 (DCL1) protein complex. Mechanisms exist that allow the DCL1 complex to precisely excise the miRNA from its precursor. Our understanding of miRNA biogenesis, particularly its intersection with transcription and other aspects of RNA metabolism such as splicing, is still evolving. Mature miRNAs are incorporated into an ARGONAUTE (AGO) effector complex competent for target gene silencing but are also subjected to turnover through a degradation mechanism that is beginning to be understood. The mechanisms of miRNA target silencing in plants are no longer limited to AGO-catalyzed slicing, and the contribution of translational inhibition is increasingly appreciated. Here, we review the mechanisms underlying the biogenesis, turnover, and activities of plant miRNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of leghaemoglobin synthesis in snake beans.

              1. The finding that the plant is the genetic determinant of leghaemoglobin production in legume nodules was further tested by inoculating snake beans with two strains of Rhizobium selected to give large genetic differences. Carbohydrate requirement patterns, immunological techniques and DNA base ratio determinations were used to demonstrate genetic differences between the two rhizobial strains. 2. Partially purified preparations of the haemoglobins from the nodules produced by the two strains showed no differences when examined by electrophoresis, isoelectric focusing or ion-exchange chromatography. 3. Two different leghaemoglobins from each type of nodule were separated by chromatography on DEAE-cellulose. One of these was isolated in the Fe(3+) form and accounted for two-thirds of the total leghaemoglobin. When it was examined in the analytical ultracentrifuge and by amino acid analysis, this major component did not vary with the inoculant rhizobial strain. The molecule had an s(20,w) of 1.88S, a diffusion coefficient of 10.7x10(-7)cm(2).s(-1) and a mol. wt. of 16700. 4. These results strongly support the hypothesis that the mRNA for leghaemoglobin is transcribed from plant DNA.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                10 August 2018
                2018
                : 9
                : 1175
                Affiliations
                Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México , Cuernavaca, Mexico
                Author notes

                Edited by: Ana Confraria, Instituto Gulbenkian de Ciência (IGC), Portugal

                Reviewed by: Gary Stacey, University of Missouri, United States; Ilker Buyuk, Ankara University, Turkey; Carla Schommer, CONICET Instituto de Biología Molecular y Celular de Rosario (IBR), Argentina

                *Correspondence: Georgina Hernández, gina@ 123456ccg.unam.mx

                This article was submitted to Plant Cell Biology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2018.01175
                6095992
                6e78ebcb-5d10-4f88-bcda-cc3aea1d9d92
                Copyright © 2018 Martín-Rodríguez, Leija, Formey and Hernández.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 May 2018
                : 23 July 2018
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 71, Pages: 13, Words: 0
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                micrornas,legume–rhizobia interaction,symbiotic nitrogen fixation,nodules,common bean,phaseolus vulgaris

                Comments

                Comment on this article