Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Massively Parallel Algorithms for the Lattice Boltzmann Method on Non-uniform Grids

Preprint

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The lattice Boltzmann method exhibits excellent scalability on current supercomputing systems and has thus increasingly become an alternative method for large-scale non-stationary flow simulations, reaching up to a trillion grid nodes. Additionally, grid refinement can lead to substantial savings in memory and compute time. These saving, however, come at the cost of much more complex data structures and algorithms. In particular, the interface between subdomains with different grid sizes must receive special treatment. In this article, we present parallel algorithms, distributed data structures, and communication routines that are implemented in the software framework waLBerla in order to support large-scale, massively parallel lattice Boltzmann-based simulations on non-uniform grids. Additionally, we evaluate the performance of our approach on two current petascale supercomputers. On an IBM Blue Gene/Q system, the largest weak scaling benchmarks with refined grids are executed with almost two million threads, demonstrating not only near-perfect scalability but also an absolute performance of close to a trillion lattice Boltzmann cell updates per second. On an Intel-based system, the strong scaling of a simulation with refined grids and a total of more than 8.5 million cells is demonstrated to reach a performance of less than one millisecond per time step. This enables simulations with complex, non-uniform grids and four million time steps per hour compute time.

      Related collections

      Author and article information

      Journal
      2015-08-31
      2016-01-21
      1508.07982

      http://arxiv.org/licenses/nonexclusive-distrib/1.0/

      Custom metadata
      32 pages, 20 figures, 4 tables
      cs.DC cs.CE

      Applied computer science, Networking & Internet architecture

      Comments

      Comment on this article