9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Maternal temperature exposure impairs emotional and cognitive responses and triggers dysregulation of neurodevelopment genes in fish

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fish are sensitive to temperature, but the intergenerational consequences of maternal exposure to high temperature on offspring behavioural plasticity and underlying mechanisms are unknown. Here we show that a thermal maternal stress induces impaired emotional and cognitive responses in offspring rainbow trout ( Oncorhynchus mykiss). Thermal stress in mothers triggered the inhibition of locomotor fear-related responses upon exposure to a novel environment and decreased spatial learning abilities in progeny. Impaired behavioural phenotypes were associated with the dysregulation of several genes known to play major roles in neurodevelopment, including auts2 (autism susceptibility candidate 2), a key gene for neurodevelopment, more specifically neuronal migration and neurite extension, and critical for the acquisition of neurocognitive function. In addition, our analysis revealed the dysregulation of another neurodevelopment gene ( dpysl5) as well as genes associated with human cognitive disorders ( arv1, plp2). We observed major differences in maternal mRNA abundance in the eggs following maternal exposure to high temperature indicating that some of the observed intergenerational effects are mediated by maternally-inherited mRNAs accumulated in the egg. Together, our observations shed new light on the intergenerational determinism of fish behaviour and associated underlying mechanisms. They also stress the importance of maternal history on fish behavioural plasticity.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish.

          The zebrafish (Danio rerio) is emerging as a promising model organism for experimental studies of stress and anxiety. Here we further validate zebrafish models of stress by analyzing how environmental and pharmacological manipulations affect their behavioral and physiological phenotypes. Experimental manipulations included exposure to alarm pheromone, chronic exposure to fluoxetine, acute exposure to caffeine, as well as acute and chronic exposure to ethanol. Acute (but not chronic) alarm pheromone and acute caffeine produced robust anxiogenic effects, including reduced exploration, increased erratic movements and freezing behavior in zebrafish tested in the novel tank diving test. In contrast, ethanol and fluoxetine had robust anxiolytic effects, including increased exploration and reduced erratic movements. The behavior of several zebrafish strains was also quantified to ascertain differences in their behavioral profiles, revealing high-anxiety (leopard, albino) and low-anxiety (wild type) strains. We also used LocoScan (CleverSys Inc.) video-tracking tool to quantify anxiety-related behaviors in zebrafish, and dissect anxiety-related phenotypes from locomotor activity. Finally, we developed a simple and effective method of measuring zebrafish physiological stress responses (based on a human salivary cortisol assay), and showed that alterations in whole-body cortisol levels in zebrafish parallel behavioral indices of anxiety. Collectively, our results confirm zebrafish as a valid, reliable, and high-throughput model of stress and affective disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Developmental plasticity and the evolution of parental effects.

            One of the outstanding challenges for evolutionary biologists is to understand how developmental plasticity can influence the evolutionary process. Developmental plasticity frequently involves parental effects, which might enable adaptive and context-dependent transgenerational transmission of phenotypic strategies. However, parent-offspring conflict will frequently result in parental effects that are suboptimal for parents, offspring or both. The fitness consequences of parental effects at evolutionary equilibrium will depend on how conflicts can be resolved by modifications of developmental processes, suggesting that proximate studies of development can inform ultimate questions. Furthermore, recent studies of plants and animals show how studies of parental effects in an ecological context provide important insights into the origin and evolution of adaptation under variable environmental conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The potential influence of maternal stress hormones on development and mental health of the offspring.

              Recent studies in humans suggest that alterations in the activity of the neuroendocrine system mediate the effects of psychosocial stress on fetal development and birth outcome. Chronic maternal distress compromises the normal regulation of hormonal activity during pregnancy and elevates free circulating corticotrophin-releasing hormone (CRH), probably of placental origin, before the normal increase occurs at term. Excess CRH, and other hormones like cortisol and met-enkephalin that pass through the placenta, could precipitate preterm labor, reduce birth weight and slow growth rate in prenatally stressed infants. CRH and/or cortisol have also been associated with impaired fetal habituation to stimuli and temperamental difficulties in infants. These changes may result from actions of the hormones on their receptors in the fetal limbic system. In the rat, gestational stress and excess maternal and fetal plasma corticosterone cause downregulation of fetal glucocorticoid (GR) and mineralocorticoid (MR) receptors and impair the feedback regulation of the hypothalamic-pituitary adrenal (HPA) axis in infancy and adulthood. The impairment in HPA axis activity can be prevented by maternal adrenalectomy and mimicked by administration of glucocorticoids. Gestational stress also increases CRH activity in the amygdala and the incidence of anxiogenic and depressive-like behavior in rats and non-human primates, which can be ameliorated by CRH antagonists. Excess amounts of CRH and cortisol reaching the human fetal brain during periods of chronic maternal stress could alter personality and predispose to attention deficits and depressive illness through changes in neurotransmitter activity.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                31 January 2019
                2019
                : 7
                : e6338
                Affiliations
                [-1] Fish Physiology and Genomics, INRA LPGP UR1037 , Rennes, France
                Article
                6338
                10.7717/peerj.6338
                6360074
                30723624
                6e7f0eda-27af-4194-b1dc-65c12afb42f8
                ©2019 Colson et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 2 May 2018
                : 21 December 2018
                Funding
                Funded by: French National Research Agency
                Award ID: ANR-13-BSV7-0002 PReSTO’Cog
                Funded by: Maternal Legacy
                Award ID: ANR-13-BSV7-0015
                This work was supported by the French National Research Agency (ANR) under grant agreements ANR-13-BSV7-0002 PReSTO’Cog to Violaine Colson and ANR-13-BSV7-0015 Maternal Legacy to Julien Bobe. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Animal Behavior
                Aquaculture, Fisheries and Fish Science
                Developmental Biology
                Genomics
                Neuroscience

                behavior,egg,transcriptome,trout,stress,temperature,intergenerational,cognition,emotion,auts2

                Comments

                Comment on this article