20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      SGK1: A Rapid Aldosterone-Induced Regulator of Renal Sodium Reabsorption

      1 , 1 , 1 , 1
      Physiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na(+) channel cell surface expression.

          The epithelial Na(+) channel (ENaC) plays an essential role in the regulation of whole body Na(+) balance and blood pressure. The cell surface expression of this channel, a complex of three subunits (alpha, beta and gamma ENaC), has been shown to be regulated by hormones such as aldosterone and vasopressin and by intracellular signaling, including ubiquitylation and/or phosphorylation. However, the molecular mechanisms involving phosphorylation in the regulation of ENaC are unclear. Here we show by expression studies in Xenopus laevis oocytes that the aldosterone-induced Sgk1 kinase interacts with the ubiquitin protein ligase Nedd4-2 in a PY motif-dependent manner and phosphorylates Nedd4-2 on Ser444 and, to a lesser extent, Ser338. Such phosphorylation reduces the interaction between Nedd4-2 and ENaC, leading to elevated ENaC cell surface expression. These data show that phosphorylation of an enzyme involved in the ubiquitylation cascade (Nedd4-2) controls cell surface density of ENaC and propose a paradigm for the control of ion channels. Moreover, they suggest a novel and complete signaling cascade for aldosterone-dependent regulation of ENaC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epithelial sodium channel regulated by aldosterone-induced protein sgk.

            Sodium homeostasis in terrestrial and freshwater vertebrates is controlled by the corticosteroid hormones, principally aldosterone, which stimulate electrogenic Na+ absorption in tight epithelia. Although aldosterone is known to increase apical membrane Na+ permeability in target cells through changes in gene transcription, the mechanistic basis of this effect remains poorly understood. The predominant early effect of aldosterone is to increase the activity of the epithelial sodium channel (ENaC), although ENaC mRNA and protein levels do not change initially. Rather, the open probability and/or number of channels in the apical membrane are greatly increased by unknown modulators. To identify hormone-stimulated gene products that modulate ENaC activity, a subtracted cDNA library was generated from A6 cells, a stable cell line of renal distal nephron origin, and the effect of candidates on ENaC activity was tested in a coexpression assay. We report here the identification of sgk (serum and glucocorticoid-regulated kinase), a member of the serine-threonine kinase family, as an aldosterone-induced regulator of ENaC activity. sgk mRNA and protein were strongly and rapidly hormone stimulated both in A6 cells and in rat kidney. Furthermore, sgk stimulated ENaC activity approximately 7-fold when they were coexpressed in Xenopus laevis oocytes. These data suggest that sgk plays a central role in aldosterone regulation of Na+ absorption and thus in the control of extracellular fluid volume, blood pressure, and sodium homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2.

              The PtdIns(3,4,5)P3-dependent activation of protein kinase B (PKB) by 3-phosphoinositide-dependent protein kinases-1 and -2 (PDK1 and PDK2 respectively) is a key event in mediating the effects of signals that activate PtdIns 3-kinase. The catalytic domain of serum- and glucocorticoid-regulated protein kinase (SGK) is 54% identical with that of PKB and, although lacking the PtdIns(3,4, 5)P3-binding pleckstrin-homology domain, SGK retains the residues that are phosphorylated by PDK1 and PDK2, which are Thr256 and Ser422 in SGK. Here we show that PDK1 activates SGK in vitro by phosphorylating Thr256. We also show that, in response to insulin-like growth factor-1 (IGF-1) or hydrogen peroxide, transfected SGK is activated in 293 cells via a PtdIns 3-kinase-dependent pathway that involves the phosphorylation of Thr256 and Ser422. The activation of SGK by PDK1 in vitro is unaffected by PtdIns(3,4,5)P3, abolished by the mutation of Ser422 to Ala, and greatly potentiated by mutation of Ser422 to Asp (although this mutation does not activate SGK itself). Consistent with these findings, the Ser422Asp mutant of SGK is activated by phosphorylation (probably at Thr256) in unstimulated 293 cells, and activation is unaffected by inhibitors of PtdIns 3-kinase. Our results are consistent with a model in which activation of SGK by IGF-1 or hydrogen peroxide is initiated by a PtdIns(3,4, 5)P3-dependent activation of PDK2, which phosphorylates Ser422. This is followed by the PtdIns(3,4,5)P3-independent phosphorylation at Thr256 that activates SGK, and is catalysed by PDK1. Like PKB, SGK preferentially phosphorylates serine and threonine residues that lie in Arg-Xaa-Arg-Xaa-Xaa-Ser/Thr motifs, and SGK and PKB inactivate glycogen synthase kinase-3 similarly in vitro and in co-transfection experiments. These findings raise the possibility that some physiological roles ascribed to PKB on the basis of the overexpression of constitutively active PKB mutants might be mediated by SGK.
                Bookmark

                Author and article information

                Journal
                Physiology
                Physiology
                American Physiological Society
                1548-9213
                1548-9221
                April 2005
                April 2005
                : 20
                : 2
                : 134-139
                Affiliations
                [1 ]Departments of Medicine and Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, California
                Article
                10.1152/physiol.00053.2004
                15772302
                6e926be0-89d5-45b5-97dd-efb75e132159
                © 2005
                History

                Comments

                Comment on this article