65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Adult haematopoietic stem cell niches

      , ,
      Nature Reviews Immunology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent advances in imaging techniques and genetic tools have rapidly increased our understanding of the niches that maintain adult haematopoietic stem cells, including the constituent cell types and the factors that directly or indirectly regulate these niches.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: found
          • Article: not found

          Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone.

          The mammalian skeletal system harbours a hierarchical system of mesenchymal stem cells, osteoprogenitors and osteoblasts sustaining lifelong bone formation. Osteogenesis is indispensable for the homeostatic renewal of bone as well as regenerative fracture healing, but these processes frequently decline in ageing organisms, leading to loss of bone mass and increased fracture incidence. Evidence indicates that the growth of blood vessels in bone and osteogenesis are coupled, but relatively little is known about the underlying cellular and molecular mechanisms. Here we identify a new capillary subtype in the murine skeletal system with distinct morphological, molecular and functional properties. These vessels are found in specific locations, mediate growth of the bone vasculature, generate distinct metabolic and molecular microenvironments, maintain perivascular osteoprogenitors and couple angiogenesis to osteogenesis. The abundance of these vessels and associated osteoprogenitors was strongly reduced in bone from aged animals, and pharmacological reversal of this decline allowed the restoration of bone mass.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment.

            The identity of cells that establish the hematopoietic microenvironment (HME) in human bone marrow (BM), and of clonogenic skeletal progenitors found in BM stroma, has long remained elusive. We show that MCAM/CD146-expressing, subendothelial cells in human BM stroma are capable of transferring, upon transplantation, the HME to heterotopic sites, coincident with the establishment of identical subendothelial cells within a miniature bone organ. Establishment of subendothelial stromal cells in developing heterotopic BM in vivo occurs via specific, dynamic interactions with developing sinusoids. Subendothelial stromal cells residing on the sinusoidal wall are major producers of Angiopoietin-1 (a pivotal molecule of the HSC "niche" involved in vascular remodeling). Our data reveal the functional relationships between establishment of the HME in vivo, establishment of skeletal progenitors in BM sinusoids, and angiogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stem cells and niches: mechanisms that promote stem cell maintenance throughout life.

              Niches are local tissue microenvironments that maintain and regulate stem cells. Long-predicted from mammalian studies, these structures have recently been characterized within several invertebrate tissues using methods that reliably identify individual stem cells and their functional requirements. Although similar single-cell resolution has usually not been achieved in mammalian tissues, principles likely to govern the behavior of niches in diverse organisms are emerging. Considerable progress has been made in elucidating how the microenvironment promotes stem cell maintenance. Mechanisms of stem cell maintenance are key to the regulation of homeostasis and likely contribute to aging and tumorigenesis when altered during adulthood.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Immunology
                Nat Rev Immunol
                Springer Nature
                1474-1733
                1474-1741
                June 12 2017
                June 12 2017
                :
                :
                Article
                10.1038/nri.2017.53
                28604734
                6e944ec3-5cf4-4708-ad5d-55fa68b6d691
                © 2017
                History

                Comments

                Comment on this article