44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hypothalamic feed-forward inhibition of thalamocortical network controls arousal and consciousness

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During non-rapid eye movement (NREM) sleep, synchronous synaptic activity within the thalamocortical network generates predominantly low frequency oscillations (< 4 Hz) that are modulated by inhibitory inputs from the thalamic reticular nucleus (TRN). Whether TRN cells integrate sleep-wake signals from sub-cortical circuits remains unclear. Here, we identified a monosynaptic LH GABA-TRN GABA transmission that exerts a strong inhibitory control over TRN neurons. We showed that optogenetic activation of this circuit recapitulated state-dependent changes of TRN neuron activity in behaving mice and induced rapid arousal during NREM, but not REM sleep. During deep anesthesia, activation of this circuit induced sustained cortical arousal. In contrast, optogenetic silencing of LH GABA-TRN GABA increased the duration of NREM sleep and amplitude of delta (1–4 Hz) oscillations. Collectively, these results demonstrate that TRN cells integrate subcortical arousal inputs selectively during NREM sleep and may participate in sleep intensity.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Neural substrates of awakening probed with optogenetic control of hypocretin neurons.

          The neural underpinnings of sleep involve interactions between sleep-promoting areas such as the anterior hypothalamus, and arousal systems located in the posterior hypothalamus, the basal forebrain and the brainstem. Hypocretin (Hcrt, also known as orexin)-producing neurons in the lateral hypothalamus are important for arousal stability, and loss of Hcrt function has been linked to narcolepsy. However, it is unknown whether electrical activity arising from Hcrt neurons is sufficient to drive awakening from sleep states or is simply correlated with it. Here we directly probed the impact of Hcrt neuron activity on sleep state transitions with in vivo neural photostimulation, genetically targeting channelrhodopsin-2 to Hcrt cells and using an optical fibre to deliver light deep in the brain, directly into the lateral hypothalamus, of freely moving mice. We found that direct, selective, optogenetic photostimulation of Hcrt neurons increased the probability of transition to wakefulness from either slow wave sleep or rapid eye movement sleep. Notably, photostimulation using 5-30 Hz light pulse trains reduced latency to wakefulness, whereas 1 Hz trains did not. This study establishes a causal relationship between frequency-dependent activity of a genetically defined neural cell type and a specific mammalian behaviour central to clinical conditions and neurobehavioural physiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronux: a platform for analyzing neural signals.

            Chronux is an open-source software package developed for the analysis of neural data. The current version of Chronux includes software for signal processing of neural time-series data including several specialized mini-packages for spike-sorting, local regression, audio segmentation, and other data-analysis tasks typically encountered by a neuroscientist. Chronux is freely available along with user tutorials, sample data, and extensive documentation from http://chronux.org/. Copyright 2010 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements.

              Simultaneous recording from large numbers of neurons is a prerequisite for understanding their cooperative behavior. Various recording techniques and spike separation methods are being used toward this goal. However, the error rates involved in spike separation have not yet been quantified. We studied the separation reliability of "tetrode" (4-wire electrode)-recorded spikes by monitoring simultaneously from the same cell intracellularly with a glass pipette and extracellularly with a tetrode. With manual spike sorting, we found a trade-off between Type I and Type II errors, with errors typically ranging from 0 to 30% depending on the amplitude and firing pattern of the cell, the similarity of the waveshapes of neighboring neurons, and the experience of the operator. Performance using only a single wire was markedly lower, indicating the advantages of multiple-site monitoring techniques over single-wire recordings. For tetrode recordings, error rates were increased by burst activity and during periods of cellular synchrony. The lowest possible separation error rates were estimated by a search for the best ellipsoidal cluster shape. Human operator performance was significantly below the estimated optimum. Investigation of error distributions indicated that suboptimal performance was caused by inability of the operators to mark cluster boundaries accurately in a high-dimensional feature space. We therefore hypothesized that automatic spike-sorting algorithms have the potential to significantly lower error rates. Implementation of a semi-automatic classification system confirms this suggestion, reducing errors close to the estimated optimum, in the range 0-8%.
                Bookmark

                Author and article information

                Journal
                9809671
                21092
                Nat Neurosci
                Nat. Neurosci.
                Nature neuroscience
                1097-6256
                1546-1726
                28 November 2016
                21 December 2015
                February 2016
                19 February 2018
                : 19
                : 2
                : 290-298
                Affiliations
                [1 ]Department of Neurology, Inselspital University Hospital, University of Bern, Bern, Switzerland
                [2 ]Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Canada
                [3 ]Leibniz Institute for Molecular Pharmacology (FMP)/NeuroCure Cluster of Excellence, Berlin, Germany
                [4 ]Department of Preclinical Research (DKF), University of Bern, Bern, Switzerland
                Author notes
                [* ]Correspondence should be addressed: Antoine Adamantidis, Ph.D., University of Bern, Dept of Neurology, Inselspital University Hospital, Freiburgstrasse, 18, 3010 Bern, Switzerland, Tel: +41 (0)31 632 55 93, antoine.adamantidis@ 123456dkf.unibe.ch
                Article
                CAMS6291
                10.1038/nn.4209
                5818272
                26691833
                6eb90c33-c9b9-44cf-a376-e674f68d7bd9

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article