14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IMP1, an mRNA binding protein that reduces the metastatic potential of breast cancer in a mouse model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cells that are able to localize β-actin mRNA efficiently have decreased metastatic potential. Invasive carcinoma cells derived from primary mammary tumors have reduced levels of an RNA binding protein IMP1/ZBP1/IGF2BP1, required for β-actin mRNA localization. We showed previously that in human breast carcinoma cells in vitro, this protein suppresses invasion. In this work we examined whether its re-expression can suppress breast cancer metastasis in a breast cancer mouse model. We developed a mouse conditionally expressing IMP1-GFP (hereinafter referred to as the IMP1 transgene) specifically in the mammary gland of a PYMT breast cancer mouse. We found that mice conditionally expressing the IMP1 transgene showed little or no metastases to the lungs from the primary tumor in contrast to PYMT mice not expressing IMP1, which uniformly develop metastases at an early stage.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors.

          We subjected cells collected using an in vivo invasion assay to cDNA microarray analysis to identify the gene expression profile of invasive carcinoma cells in primary mammary tumors. Expression of genes involved in cell division, survival, and cell motility were most dramatically changed in invasive cells indicating a population that is neither dividing nor apoptotic but intensely motile. In particular, the genes coding for the minimum motility machine that regulates beta-actin polymerization at the leading edge and, therefore, the motility and chemotaxis of carcinoma cells, were dramatically up-regulated. However, ZBP1, which restricts the localization of beta-actin, the substrate for the minimum motility machine, was down-regulated. This pattern of expression implicated ZBP1 as a suppressor of invasion. Reexpression of ZBP1 in metastatic cells with otherwise low levels of ZBP1 reestablished normal patterns of beta-actin mRNA targeting and suppressed chemotaxis and invasion in primary tumors. ZBP1 reexpression also inhibited metastasis from tumors. These experiments support the involvement in metastasis of the pathways identified in invasive cells, which are regulated by ZBP1.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of a beta-actin mRNA zipcode-binding protein.

            Localization of beta-actin mRNA to the leading edge of fibroblasts requires the presence of conserved elements in the 3' untranslated region of the mRNA, including a 54-nucleotide element which has been termed the "zipcode" (E. Kislauskis, X. Zhu, and R. H. Singer, J. Cell Biol. 127:441-451, 1994). In order to identify proteins which bind to the zipcode and possibly play a role in localization, we performed band-shift mobility assays, UV cross-linking, and affinity purification experiments. A protein of 68 kDa was identified which binds to the proximal (to the coding region) half of the zipcode with high specificity (ZBP-1). Microsequencing provided unique peptide sequences of approximately 15 residues each. Degenerate primers corresponding to the codons derived from the peptides were synthesized and used for PCR amplification. Screening of a chicken cDNA library resulted in isolation of several clones providing a DNA sequence encoding a 67.7-kDa protein with regions homologous to several RNA-binding proteins, such as hnRNP E1 and E2, and with consensus mRNA recognition motif with RNP1 and 2 motifs and a putative REV-like nuclear export signal. Antipeptide antibodies were raised in rabbits which bound to ZBP-1 and coimmunoprecipitated proteins of 120 and 25 kDa. The 120-kDa protein was also obtained by affinity purification with the RNA zipcode sequence, along with a 53-kDa protein, but the 25-kDa protein appeared only in immunoprecipitations. Mutation of one of the conserved sequences within the zipcode, an ACACCC element in its proximal half, greatly reduced its protein binding and localization properties. These data suggest that the 68-kDa ZBP-1 we have isolated and cloned is an RNA-binding protein that functions within a complex to localize beta-actin mRNA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Two ZBP1 KH domains facilitate β-actin mRNA localization, granule formation, and cytoskeletal attachment

              Chicken embryo fibroblasts (CEFs) localize β-actin mRNA to their lamellae, a process important for the maintenance of cell polarity and motility. The localization of β-actin mRNA requires a cis localization element (zipcode) and involves zipcode binding protein 1 (ZBP1), a protein that specifically binds to the zipcode. Both localize to the lamellipodia of polarized CEFs. ZBP1 and its homologues contain two NH2-terminal RNA recognition motifs (RRMs) and four COOH-terminal hnRNP K homology (KH) domains. By using ZBP1 truncations fused to GFP in conjunction with in situ hybridization analysis, we have determined that KH domains three and four were responsible for granule formation and cytoskeletal association. When the NH2 terminus was deleted, granules formed by the KH domains alone did not accumulate at the leading edge, suggesting a role for the NH2 terminus in targeting transport granules to their destination. RNA binding studies were used to show that the third and fourth KH domains, not the RRM domains, bind the zipcode of β-actin mRNA. Overexpression of the four KH domains or certain subsets of these domains delocalized β-actin mRNA in CEFs and inhibited fibroblast motility, demonstrating the importance of ZBP1 function in both β-actin mRNA localization and cell motility.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                8 November 2016
                16 September 2016
                : 7
                : 45
                : 72662-72671
                Affiliations
                1 Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
                2 Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
                Author notes
                Correspondence to: Robert H. Singer, robert.singer@ 123456einstein.yu.edu
                Article
                12083
                10.18632/oncotarget.12083
                5341935
                27655671
                6ec159f6-dd40-4d7e-89bb-18814906d3c6
                Copyright: © 2016 Nwokafor et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 January 2016
                : 2 September 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                cancer,breast cancer,metastasis,rna binding protein,imp1
                Oncology & Radiotherapy
                cancer, breast cancer, metastasis, rna binding protein, imp1

                Comments

                Comment on this article