33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coordinated regulation of Myc trans-activation targets by Polycomb and the Trithorax group protein Ash1

      research-article
      1 , 2 , , 3 , 1
      BMC Molecular Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The Myc oncoprotein is a transcriptional regulator whose function is essential for normal development. Myc is capable of binding to 10% of the mammalian genome, and it is unclear how a developing embryo controls the DNA binding of its abundant Myc proteins in order to avoid Myc's potential for inducing tumorigenesis.

          Results

          To identify chromatin binding proteins with a potential role in controlling Myc activity, we established a genetic assay for dMyc activity in Drosophila. We conducted a genome-wide screen using this assay, and identified the Trithorax Group protein Ash1 as a modifier of dMyc activity. Ash1 is a histone methyltransferase known for its role in opposing repression by Polycomb. Using RNAi in the embryo and Affymetrix microarrays, we show that ash1 RNAi causes the increased expression of many genes, suggesting that it is directly or indirectly required for repression in the embryo, in contrast to its known role in maintenance of activation. Many of these genes also respond similarly upon depletion of Pc and pho transcripts, as determined by concurrent microarray analysis of Pc and pho RNAi embryos, suggesting that the three are required for low levels of expression of a common set of targets. Further, many of these overlapping targets are also activated by Myc overexpression. We identify a second group of genes whose expression in the embryo requires Ash1, consistent with its previously established role in maintenance of activation. We find that this second group of Ash1 targets overlaps those activated by Myc and that ectopic Myc overcomes their requirement for Ash1.

          Conclusion

          Genetic, genomic and chromatin immunoprecipitation data suggest a model in which Pc, Ash1 and Pho are required to maintain a low level of expression of embryonic targets of activation by Myc, and that this occurs, directly or indirectly, by a combination of disparate chromatin modifications.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.

          Heterochromatin protein 1 (HP1) is localized at heterochromatin sites where it mediates gene silencing. The chromo domain of HP1 is necessary for both targeting and transcriptional repression. In the fission yeast Schizosaccharomyces pombe, the correct localization of Swi6 (the HP1 equivalent) depends on Clr4, a homologue of the mammalian SUV39H1 histone methylase. Both Clr4 and SUV39H1 methylate specifically lysine 9 of histone H3 (ref. 6). Here we show that HP1 can bind with high affinity to histone H3 methylated at lysine 9 but not at lysine 4. The chromo domain of HP1 is identified as its methyl-lysine-binding domain. A point mutation in the chromo domain, which destroys the gene silencing activity of HP1 in Drosophila, abolishes methyl-lysine-binding activity. Genetic and biochemical analysis in S. pombe shows that the methylase activity of Clr4 is necessary for the correct localization of Swi6 at centromeric heterochromatin and for gene silencing. These results provide a stepwise model for the formation of a transcriptionally silent heterochromatin: SUV39H1 places a 'methyl marker' on histone H3, which is then recognized by HP1 through its chromo domain. This model may also explain the stable inheritance of the heterochromatic state.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Histone methyltransferase activity of a Drosophila Polycomb group repressor complex.

            Polycomb group (PcG) proteins maintain transcriptional repression during development, likely by creating repressive chromatin states. The Extra Sex Combs (ESC) and Enhancer of Zeste [E(Z)] proteins are partners in an essential PcG complex, but its full composition and biochemical activities are not known. A SET domain in E(Z) suggests this complex might methylate histones. We purified an ESC-E(Z) complex from Drosophila embryos and found four major subunits: ESC, E(Z), NURF-55, and the PcG repressor, SU(Z)12. A recombinant complex reconstituted from these four subunits methylates lysine-27 of histone H3. Mutations in the E(Z) SET domain disrupt methyltransferase activity in vitro and HOX gene repression in vivo. These results identify E(Z) as a PcG protein with enzymatic activity and implicate histone methylation in PcG-mediated silencing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcriptional regulation and transformation by Myc proteins.

              Myc genes are key regulators of cell proliferation, and their deregulation contributes to the genesis of most human tumours. Recently, a wealth of data has shed new light on the biochemical functions of Myc proteins and on the mechanisms through which they function in cellular transformation.
                Bookmark

                Author and article information

                Journal
                BMC Mol Biol
                BMC Molecular Biology
                BioMed Central (London )
                1471-2199
                2007
                22 May 2007
                : 8
                : 40
                Affiliations
                [1 ]Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
                [2 ]Department of Biology, University of North Carolina Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
                [3 ]Departments of Pharmacology and Genetics, HB 7936, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH 03756, USA
                Article
                1471-2199-8-40
                10.1186/1471-2199-8-40
                1887537
                17519021
                6ec25c21-95d8-41a6-bed5-48e8faa1b029
                Copyright © 2007 Goodliffe et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 March 2007
                : 22 May 2007
                Categories
                Research Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article