3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structure of an engineered multidrug transporter MdfA reveals the molecular basis for substrate recognition

      research-article
      , ,
      Communications Biology
      Nature Publishing Group UK
      Biochemistry, Structural biology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MdfA is a prototypical H +-coupled multidrug transporter that is characterized by extraordinarily broad substrate specificity. The involvement of specific H-bonds in MdfA-drug interactions and the simplicity of altering the substrate specificity of MdfA contradict the promiscuous nature of multidrug recognition, presenting a baffling conundrum. Here we show the X-ray structures of MdfA variant I239T/G354E in complexes with three electrically different ligands, determined at resolutions up to 2.2 Å. Our structures reveal that I239T/G354E interacts with these compounds differently from MdfA and that I239T/G354E possesses two discrete, non-overlapping substrate-binding sites. Our results shed new light on the molecular design of multidrug-binding and protonation sites and highlight the importance of often-neglected, long-range charge-charge interactions in multidrug recognition. Beyond helping to solve the ostensible conundrum of multidrug recognition, our findings suggest the mechanistic difference between substrate and inhibitor for any H +-dependent multidrug transporter, which may open new vistas on curtailing efflux-mediated multidrug resistance.

          Abstract

          Hsin-Hui Wu et al. present the structure of the I239T/G354E variant of the MdfA multidrug transporter in complex with three different ligands. They find that this variant has two discrete, non-overlapping substrate binding sites, leading to differential interactions with ligands compared to wild-type MdfA.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins.

          Formation of well-ordered crystals of membrane proteins is a bottleneck for structure determination by X-ray crystallography. Nevertheless, one can increase the probability of successful crystallization by precrystallization screening, a process by which one analyzes the monodispersity and stability of the protein-detergent complex. Traditionally, this has required microgram to milligram quantities of purified protein and a concomitant investment of time and resources. Here, we describe a rapid and efficient precrystallization screening strategy in which the target protein is covalently fused to green fluorescent protein (GFP) and the resulting unpurified protein is analyzed by fluorescence-detection size-exclusion chromatography (FSEC). This strategy requires only nanogram quantities of unpurified protein and allows one to evaluate localization and expression level, the degree of monodispersity, and the approximate molecular mass. We show the application of this precrystallization screening to four membrane proteins derived from prokaryotic or eukaryotic organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Very fast prediction and rationalization of pKa values for protein-ligand complexes.

            The PROPKA method for the prediction of the pK(a) values of ionizable residues in proteins is extended to include the effect of non-proteinaceous ligands on protein pK(a) values as well as predict the change in pK(a) values of ionizable groups on the ligand itself. This new version of PROPKA (PROPKA 2.0) is, as much as possible, developed by adapting the empirical rules underlying PROPKA 1.0 to ligand functional groups. Thus, the speed of PROPKA is retained, so that the pK(a) values of all ionizable groups are computed in a matter of seconds for most proteins. This adaptation is validated by comparing PROPKA 2.0 predictions to experimental data for 26 protein-ligand complexes including trypsin, thrombin, three pepsins, HIV-1 protease, chymotrypsin, xylanase, hydroxynitrile lyase, and dihydrofolate reductase. For trypsin and thrombin, large protonation state changes (|n| > 0.5) have been observed experimentally for 4 out of 14 ligand complexes. PROPKA 2.0 and Klebe's PEOE approach (Czodrowski P et al. J Mol Biol 2007;367:1347-1356) both identify three of the four large protonation state changes. The protonation state changes due to plasmepsin II, cathepsin D and endothiapepsin binding to pepstatin are predicted to within 0.4 proton units at pH 6.5 and 7.0, respectively. The PROPKA 2.0 results indicate that structural changes due to ligand binding contribute significantly to the proton uptake/release, as do residues far away from the binding site, primarily due to the change in the local environment of a particular residue and hence the change in the local hydrogen bonding network. Overall the results suggest that PROPKA 2.0 provides a good description of the protein-ligand interactions that have an important effect on the pK(a) values of titratable groups, thereby permitting fast and accurate determination of the protonation states of key residues and ligand functional groups within the binding or active site of a protein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular basis of bacterial resistance to chloramphenicol and florfenicol.

              Chloramphenicol (Cm) and its fluorinated derivative florfenicol (Ff) represent highly potent inhibitors of bacterial protein biosynthesis. As a consequence of the use of Cm in human and veterinary medicine, bacterial pathogens of various species and genera have developed and/or acquired Cm resistance. Ff is solely used in veterinary medicine and has been introduced into clinical use in the mid-1990s. Of the Cm resistance genes known to date, only a small number also mediates resistance to Ff. In this review, we present an overview of the different mechanisms responsible for resistance to Cm and Ff with particular focus on the two different types of chloramphenicol acetyltransferases (CATs), specific exporters and multidrug transporters. Phylogenetic trees of the different CAT proteins and exporter proteins were constructed on the basis of a multisequence alignment. Moreover, information is provided on the mobile genetic elements carrying Cm or Cm/Ff resistance genes to provide a basis for the understanding of the distribution and the spread of Cm resistance--even in the absence of a selective pressure imposed by the use of Cm or Ff.
                Bookmark

                Author and article information

                Contributors
                min.lu@rosalindfranklin.edu
                Journal
                Commun Biol
                Commun Biol
                Communications Biology
                Nature Publishing Group UK (London )
                2399-3642
                17 June 2019
                17 June 2019
                2019
                : 2
                : 210
                Affiliations
                ISNI 0000 0004 0388 7807, GRID grid.262641.5, Department of Biochemistry and Molecular Biology, , Rosalind Franklin University of Medicine and Science, ; 3333 Green Bay Road, North Chicago, IL 60064 USA
                Article
                446
                10.1038/s42003-019-0446-y
                6572762
                31240248
                6ecb114b-70c1-472b-a8dd-0446cfed659f
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 17 December 2018
                : 30 April 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000057, U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS);
                Award ID: R01-GM094195
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                biochemistry,structural biology
                biochemistry, structural biology

                Comments

                Comment on this article