158
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Excess centrosomes disrupt endothelial cell migration via centrosome scattering

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Centrosome–microtubule interactions during interphase are important for centrosome clustering and cell polarity.

          Abstract

          Supernumerary centrosomes contribute to spindle defects and aneuploidy at mitosis, but the effects of excess centrosomes during interphase are poorly understood. In this paper, we show that interphase endothelial cells with even one extra centrosome exhibit a cascade of defects, resulting in disrupted cell migration and abnormal blood vessel sprouting. Endothelial cells with supernumerary centrosomes had increased centrosome scattering and reduced microtubule (MT) nucleation capacity that correlated with decreased Golgi integrity and randomized vesicle trafficking, and ablation of excess centrosomes partially rescued these parameters. Mechanistically, tumor endothelial cells with supernumerary centrosomes had less centrosome-localized γ-tubulin, and Plk1 blockade prevented MT growth, whereas overexpression rescued centrosome γ-tubulin levels and centrosome dynamics. These data support a model whereby centrosome–MT interactions during interphase are important for centrosome clustering and cell polarity and further suggest that disruption of interphase cell behavior by supernumerary centrosomes contributes to pathology independent of mitotic effects.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Random versus directionally persistent cell migration.

          Directional migration is an important component of cell motility. Although the basic mechanisms of random cell movement are well characterized, no single model explains the complex regulation of directional migration. Multiple factors operate at each step of cell migration to stabilize lamellipodia and maintain directional migration. Factors such as the topography of the extracellular matrix, the cellular polarity machinery, receptor signalling, integrin trafficking, integrin co-receptors and actomyosin contraction converge on regulation of the Rho family of GTPases and the control of lamellipodial protrusions to promote directional migration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The centrosome in cells and organisms.

            The centrosome acts as the main microtubule-nucleating organelle in animal cells and plays a critical role in mitotic spindle orientation and in genome stability. Yet, despite its central role in cell biology, the centrosome is not present in all multicellular organisms or in all cells of a given organism. The main outcome of centrosome reproduction is the transmission of polarity to daughter cells and, in most animal species, the sperm-donated centrosome defines embryo polarity. Here I will discuss the role of the centrosome in cell polarity, resulting from its ability to position the nucleus at the cell center, and discuss how centrosome innovation might have been critical during metazoan evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material.

              The centrosome is the main microtubule organization centre of animal cells. It is composed of a centriole pair surrounded by pericentriolar material (PCM). Traditionally described as amorphous, the architecture of the PCM is not known, although its intricate mode of assembly alludes to the presence of a functional, hierarchical structure. Here we used subdiffraction imaging to reveal organizational features of the PCM. Interphase PCM components adopt a concentric toroidal distribution of discrete diameter around centrioles. Positional mapping of multiple non-overlapping epitopes revealed that pericentrin (PCNT) is an elongated molecule extending away from the centriole. We find that PCM components occupy separable spatial domains within mitotic PCM that are maintained in the absence of microtubule nucleation complexes and further implicate PCNT and CDK5RAP2 in the organization and assembly of PCM. Globally, this work highlights the role of higher-order PCM organization in the regulation of centrosome assembly and function.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                21 July 2014
                : 206
                : 2
                : 257-272
                Affiliations
                [1 ]Department of Biology , [2 ]McAllister Heart Institute , and [3 ]Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
                Author notes
                Correspondence to Victoria L. Bautch: bautch@ 123456med.unc.edu
                Article
                201311013
                10.1083/jcb.201311013
                4107782
                25049273
                6ecdaafb-b7fc-4087-b34f-ccfd4be69ae5
                © 2014 Kushner et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 4 November 2013
                : 17 June 2014
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article