7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Plastic litter accumulation on high-water strandline of urban beaches in Mumbai, India

      , ,
      Environmental Monitoring and Assessment
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Today, almost every beach on every coastline is threatened by human activities. The inadequate recycling and poor management of waste in developing countries has resulted in considerable quantities of plastic contaminating beaches. Though India has long coastline of 5,420 km along the mainland with 43 % of sandy beaches, data on litter accumulation, particularly the plastics, which are one of the most common and persistent pollutants in marine environment, are scanty. The abundance and distribution of plastic litter was quantitatively assessed in four sandy beaches in Mumbai, India, bimonthly from May 2011 to March 2012. Triplicates of 2 × 2 m (4 m(2)) quadrats were sampled in each beach with a total of 72 quadrats. Overall, average abundance of 11.6 items m(-2) (0.25-282.5 items m(-2)) and 3.24 g m(-2) (0.27-15.53 g m(-2)) plastic litter was recorded in Mumbai beaches. Plastic litter accumulation significantly varied temporally and spatially at p = 0.05. Significantly higher plastic litter accumulation was recorded in Juhu beach. Furthermore, the highest abundance by weight was recorded in November and May numerically. More than 80 % of plastic particles were within the size range of 5-100 mm both by number and weight. Moreover, coloured plastics were predominant with 67 % by number of items and 51 % by weight. Probably, the intense use of beaches for recreation, tourism, and religious activities has increased the potential for plastic contamination in urban beaches in Mumbai.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Synthetic polymers in the marine environment: a rapidly increasing, long-term threat.

          Synthetic polymers, commonly known as plastics, have been entering the marine environment in quantities paralleling their level of production over the last half century. However, in the last two decades of the 20th Century, the deposition rate accelerated past the rate of production, and plastics are now one of the most common and persistent pollutants in ocean waters and beaches worldwide. Thirty years ago the prevailing attitude of the plastic industry was that "plastic litter is a very small proportion of all litter and causes no harm to the environment except as an eyesore" [Derraik, J.G.B., 2002. The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44(9), 842-852]. Between 1960 and 2000, the world production of plastic resins increased 25-fold, while recovery of the material remained below 5%. Between 1970 and 2003, plastics became the fastest growing segment of the US municipal waste stream, increasing nine-fold, and marine litter is now 60-80% plastic, reaching 90-95% in some areas. While undoubtedly still an eyesore, plastic debris today is having significant harmful effects on marine biota. Albatross, fulmars, shearwaters and petrels mistake floating plastics for food, and many individuals of these species are affected; in fact, 44% of all seabird species are known to ingest plastic. Sea turtles ingest plastic bags, fishing line and other plastics, as do 26 species of cetaceans. In all, 267 species of marine organisms worldwide are known to have been affected by plastic debris, a number that will increase as smaller organisms are assessed. The number of fish, birds, and mammals that succumb each year to derelict fishing nets and lines in which they become entangled cannot be reliably known; but estimates are in the millions. We divide marine plastic debris into two categories: macro, >5 mm and micro, <5 mm. While macro-debris may sometimes be traced to its origin by object identification or markings, micro-debris, consisting of particles of two main varieties, (1) fragments broken from larger objects, and (2) resin pellets and powders, the basic thermoplastic industry feedstocks, are difficult to trace. Ingestion of plastic micro-debris by filter feeders at the base of the food web is known to occur, but has not been quantified. Ingestion of degraded plastic pellets and fragments raises toxicity concerns, since plastics are known to adsorb hydrophobic pollutants. The potential bioavailability of compounds added to plastics at the time of manufacture, as well as those adsorbed from the environment are complex issues that merit more widespread investigation. The physiological effects of any bioavailable compounds desorbed from plastics by marine biota are being directly investigated, since it was found 20 years ago that the mass of ingested plastic in Great Shearwaters was positively correlated with PCBs in their fat and eggs. Colonization of plastic marine debris by sessile organisms provides a vector for transport of alien species in the ocean environment and may threaten marine biodiversity. There is also potential danger to marine ecosystems from the accumulation of plastic debris on the sea floor. The accumulation of such debris can inhibit gas exchange between the overlying waters and the pore waters of the sediments, and disrupt or smother inhabitants of the benthos. The extent of this problem and its effects have recently begun to be investigated. A little more than half of all thermoplastics will sink in seawater.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Monitoring the abundance of plastic debris in the marine environment.

            Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association of metals with plastic production pellets in the marine environment.

              Plastic production pellets sampled from four beaches along a stretch of coastline (south Devon, SW England) and accompanying, loosely adhered and entrapped material removed ultrasonically have been analysed for major metals (Al, Fe, Mn) and trace metals (Cu, Zn, Pb, Ag, Cd, Co, Cr, Mo, Sb, Sn, U) following acid digestion. In most cases, metal concentrations in composite pellet samples from each site were less than but within an order of magnitude of corresponding concentrations in the pooled extraneous materials. However, normalisation of data with respect to Al revealed enrichment of Cd and Pb in plastic pellets at two sites. These observations are not wholly due to the association of pellets with fine material that is resistant to ultrasonication since new polyethylene pellets suspended in a harbour for 8 weeks accumulated metals from sea water through adsorption and precipitation. The environmental implications and potential applications of these findings are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Environmental Monitoring and Assessment
                Environ Monit Assess
                Springer Nature
                0167-6369
                1573-2959
                September 2013
                February 2013
                : 185
                : 9
                : 7709-7719
                Article
                10.1007/s10661-013-3129-z
                23430068
                6ed5ea42-d8fa-43cf-bf42-f2a3e226c4ad
                © 2013
                History

                Comments

                Comment on this article