46
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tocilizumab for severe COVID‐19 pneumonia: Case series of 5 Australian patients

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim

          To describe the first Australian cases of severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV2) disease (COVID‐19) pneumonia treated with the interleukin‐6 receptor antagonist tocilizumab.

          Methods

          Retrospective, open‐label, real‐world, uncontrolled, single‐arm case series conducted in 2 tertiary hospitals in NSW, Australia and 1 tertiary hospital in Victoria, Australia. Five adult male patients aged between 46 and 74 years with type 1 respiratory failure due to COVID‐19 pneumonia requiring intensive care unit (ICU) admission and biochemical evidence of systemic hyperinflammation (C‐reactive protein greater than 100 mg/L; ferritin greater than 700 μg/L) were administered variable‐dose tocilizumab.

          Results

          At between 13 and 26 days follow‐up, all patients are alive and have been discharged from ICU. Two patients have been discharged home. Two patients avoided endotracheal intubation. Oxygen therapy has been ceased in three patients. Four adverse events potentially associated with tocilizumab therapy occurred in three patients: ventilator‐associated pneumonia, bacteremia associated with central venous catheterization, myositis and hepatitis. All patients received broad‐spectrum antibiotics, 4 received corticosteroids and 2 received both lopinavir/ritonavir and hydroxychloroquine. The time from first tocilizumab administration to improvement in ventilation, defined as a 25% reduction in fraction of inspired oxygen required to maintain peripheral oxygen saturation greater than 92%, ranged from 7 hours to 4.6 days.

          Conclusions

          Tocilizumab use was associated with favorable clinical outcome in our patients. We recommend tocilizumab be included in randomized controlled trials of treatment for patients with severe COVID‐19 pneumonia, and be considered for compassionate use in such patients pending the results of these trials.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

          Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study

            Summary Background An ongoing outbreak of pneumonia associated with the severe acute respiratory coronavirus 2 (SARS-CoV-2) started in December, 2019, in Wuhan, China. Information about critically ill patients with SARS-CoV-2 infection is scarce. We aimed to describe the clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia. Methods In this single-centered, retrospective, observational study, we enrolled 52 critically ill adult patients with SARS-CoV-2 pneumonia who were admitted to the intensive care unit (ICU) of Wuhan Jin Yin-tan hospital (Wuhan, China) between late December, 2019, and Jan 26, 2020. Demographic data, symptoms, laboratory values, comorbidities, treatments, and clinical outcomes were all collected. Data were compared between survivors and non-survivors. The primary outcome was 28-day mortality, as of Feb 9, 2020. Secondary outcomes included incidence of SARS-CoV-2-related acute respiratory distress syndrome (ARDS) and the proportion of patients requiring mechanical ventilation. Findings Of 710 patients with SARS-CoV-2 pneumonia, 52 critically ill adult patients were included. The mean age of the 52 patients was 59·7 (SD 13·3) years, 35 (67%) were men, 21 (40%) had chronic illness, 51 (98%) had fever. 32 (61·5%) patients had died at 28 days, and the median duration from admission to the intensive care unit (ICU) to death was 7 (IQR 3–11) days for non-survivors. Compared with survivors, non-survivors were older (64·6 years [11·2] vs 51·9 years [12·9]), more likely to develop ARDS (26 [81%] patients vs 9 [45%] patients), and more likely to receive mechanical ventilation (30 [94%] patients vs 7 [35%] patients), either invasively or non-invasively. Most patients had organ function damage, including 35 (67%) with ARDS, 15 (29%) with acute kidney injury, 12 (23%) with cardiac injury, 15 (29%) with liver dysfunction, and one (2%) with pneumothorax. 37 (71%) patients required mechanical ventilation. Hospital-acquired infection occurred in seven (13·5%) patients. Interpretation The mortality of critically ill patients with SARS-CoV-2 pneumonia is considerable. The survival time of the non-survivors is likely to be within 1–2 weeks after ICU admission. Older patients (>65 years) with comorbidities and ARDS are at increased risk of death. The severity of SARS-CoV-2 pneumonia poses great strain on critical care resources in hospitals, especially if they are not adequately staffed or resourced. Funding None.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              COVID-19: consider cytokine storm syndromes and immunosuppression

              As of March 12, 2020, coronavirus disease 2019 (COVID-19) has been confirmed in 125 048 people worldwide, carrying a mortality of approximately 3·7%, 1 compared with a mortality rate of less than 1% from influenza. There is an urgent need for effective treatment. Current focus has been on the development of novel therapeutics, including antivirals and vaccines. Accumulating evidence suggests that a subgroup of patients with severe COVID-19 might have a cytokine storm syndrome. We recommend identification and treatment of hyperinflammation using existing, approved therapies with proven safety profiles to address the immediate need to reduce the rising mortality. Current management of COVID-19 is supportive, and respiratory failure from acute respiratory distress syndrome (ARDS) is the leading cause of mortality. 2 Secondary haemophagocytic lymphohistiocytosis (sHLH) is an under-recognised, hyperinflammatory syndrome characterised by a fulminant and fatal hypercytokinaemia with multiorgan failure. In adults, sHLH is most commonly triggered by viral infections 3 and occurs in 3·7–4·3% of sepsis cases. 4 Cardinal features of sHLH include unremitting fever, cytopenias, and hyperferritinaemia; pulmonary involvement (including ARDS) occurs in approximately 50% of patients. 5 A cytokine profile resembling sHLH is associated with COVID-19 disease severity, characterised by increased interleukin (IL)-2, IL-7, granulocyte-colony stimulating factor, interferon-γ inducible protein 10, monocyte chemoattractant protein 1, macrophage inflammatory protein 1-α, and tumour necrosis factor-α. 6 Predictors of fatality from a recent retrospective, multicentre study of 150 confirmed COVID-19 cases in Wuhan, China, included elevated ferritin (mean 1297·6 ng/ml in non-survivors vs 614·0 ng/ml in survivors; p 39·4°C 49 Organomegaly None 0 Hepatomegaly or splenomegaly 23 Hepatomegaly and splenomegaly 38 Number of cytopenias * One lineage 0 Two lineages 24 Three lineages 34 Triglycerides (mmol/L) 4·0 mmol/L 64 Fibrinogen (g/L) >2·5 g/L 0 ≤2·5 g/L 30 Ferritin ng/ml 6000 ng/ml 50 Serum aspartate aminotransferase <30 IU/L 0 ≥30 IU/L 19 Haemophagocytosis on bone marrow aspirate No 0 Yes 35 Known immunosuppression † No 0 Yes 18 The Hscore 11 generates a probability for the presence of secondary HLH. HScores greater than 169 are 93% sensitive and 86% specific for HLH. Note that bone marrow haemophagocytosis is not mandatory for a diagnosis of HLH. HScores can be calculated using an online HScore calculator. 11 HLH=haemophagocytic lymphohistiocytosis. * Defined as either haemoglobin concentration of 9·2 g/dL or less (≤5·71 mmol/L), a white blood cell count of 5000 white blood cells per mm3 or less, or platelet count of 110 000 platelets per mm3 or less, or all of these criteria combined. † HIV positive or receiving longterm immunosuppressive therapy (ie, glucocorticoids, cyclosporine, azathioprine).
                Bookmark

                Author and article information

                Contributors
                timothy.west@health.nsw.gov.au
                Journal
                Int J Rheum Dis
                Int J Rheum Dis
                10.1111/(ISSN)1756-185X
                APL
                International Journal of Rheumatic Diseases
                John Wiley and Sons Inc. (Hoboken )
                1756-1841
                1756-185X
                13 August 2020
                August 2020
                : 23
                : 8 ( doiID: 10.1111/apl.v23.8 )
                : 1030-1039
                Affiliations
                [ 1 ] Department of Immunology and Allergy Campbelltown Hospital Sydney NSW Australia
                [ 2 ] Department of Respiratory Medicine Concord Hospital Sydney NSW Australia
                [ 3 ] Clinical Haematology Unit Monash Health Melbourne VIC Australia
                [ 4 ] Department of Medicine Campbelltown Hospital Sydney NSW Australia
                [ 5 ] Department of Medicine Concord Hospital Sydney NSW Australia
                [ 6 ] Intensive Care Unit Campbelltown Hospital Sydney NSW Australia
                [ 7 ] Department of Respiratory Medicine Campbelltown Hospital Sydney NSW Australia
                [ 8 ] Department of Microbiology and Infectious Diseases Concord Hospital Sydney NSW Australia
                [ 9 ] School of Medicine Western Sydney University Sydney NSW Australia
                [ 10 ] Intensive Care Unit Concord Hospital Sydney NSW Australia
                [ 11 ] Intensive Care Unit Monash Health Melbourne VIC Australia
                [ 12 ] Monash Infectious Diseases Monash University Melbourne VIC Australia
                Author notes
                [*] [* ] Correspondence

                Dr Timothy West, Department of Immunology and Allergy, Campbelltown Hospital, Therry Road, Campbelltown NSW 2560, Australia.

                Email: timothy.west@ 123456health.nsw.gov.au

                Author information
                https://orcid.org/0000-0002-5469-5501
                Article
                APL13913
                10.1111/1756-185X.13913
                7436606
                32881350
                6ed5edc4-257c-4ae3-a803-a5af5403afbc
                © 2020 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd

                This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.

                History
                : 12 June 2020
                : 17 June 2020
                : 17 June 2020
                Page count
                Figures: 2, Tables: 3, Pages: 10, Words: 6301
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                August 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.7 mode:remove_FC converted:19.08.2020

                Rheumatology
                acute respiratory distress syndrome,coronavirus,immunomodulation,interleukin‐6,pneumonia,tocilizumab,viral

                Comments

                Comment on this article